Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: S. D. Eckermann x
  • Journal of the Atmospheric Sciences x
  • All content x
Clear All Modify Search
R. S. Lieberman, J. France, D. A. Ortland, and S. D. Eckermann

Abstract

Recent studies suggest linkages between anomalously warm temperatures in the winter stratosphere, and the high-latitude summer mesopause. The summer temperature anomaly is manifested in the decline of polar mesospheric clouds. The 2-day wave is a strong-amplitude and transient summer feature that interacts with the background state so as to warm the high-latitude summer mesopause. This wave has been linked to a low-latitude phenomenon called inertial instability, which is organized by breaking planetary waves in the winter stratosphere. Hence, inertial instability has been identified as a possible nexus between the disturbed winter stratosphere, and summer mesopause warming. We investigate a sustained occurrence of inertial instability during 19 July–8 August 2014. During this period, stratospheric winter temperatures warmed by about 10 K, while a steep decline in polar mesospheric clouds was reported between 26 July and 6 August. We present, for the first time, wave driving associated with observed inertial instability. The effect of inertial instability is to export eastward momentum from the winter hemisphere across the equator into the summer hemisphere. Using a primitive equation model, we demonstrate that the wave stresses destabilize the stratopause summer easterly jet. The reconfigured wind profile excites the wavenumber-4 component of the 2-day wave, leading to enhanced warming of the summer mesopause. This work supports previous numerical investigations that identified planetary wave–driven inertial instability as a source of the 2-day wave.

Open access
Julio T. Bacmeister, Stephen D. Eckermann, Athanasios Tsias, Kenneth S. Carslaw, and Thomas Peter

Abstract

Power spectral densities (PSDs) of mesoscale fluctuations of temperature and rate of change of temperature (heating–cooling rate) due to a spectrum of stratospheric gravity waves are derived using canonical spectral forms based on observations and linear gravity wave theory. The parameterization developed here assumes a continuous distribution of horizontal wave phase speeds, as opposed to a previous spectral parameterization in which all waves were assigned stationary ground-based phase speeds. Significantly different heating–cooling rate PSDs result in each case. The differences are largest at small horizontal scales, where the continuous phase-speed parameterization yields heating–cooling rate PSDs that are several orders of magnitude smaller than in the stationary phase-speed parameterization. A simple Monte Carlo method is used to synthesize randomly phased temperature perturbation time series within tagged air parcels using either spectral parameterization. These time series are incorporated into a nonequilibrium, microphysical trajectory-box model to assess the microphysical consequences of each parameterization. Collated results yield a “natural” geophysical scatter of instantaneous aerosol volumes within air parcels away from equilibrium conditions. The amount of scatter was much smaller when the continuous phase-speed parameterization was used.

Full access