Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: S. Joseph Munchak x
- Precipitation Retrieval Algorithms for GPM x
- All content x
Abstract
The Global Precipitation Measurement (GPM) Microwave Imager (GMI) and dual-frequency precipitation radar (DPR) are designed to provide the most accurate instantaneous precipitation estimates currently available from space. The GPM Combined Radar–Radiometer Algorithm (CORRA) plays a key role in this process by retrieving precipitation profiles that are consistent with GMI and DPR measurements; therefore, it is desirable that the forward models in CORRA use the same geophysical input parameters. This study explores the feasibility of using internally consistent emissivity and surface backscatter cross-sectional (
Abstract
The Global Precipitation Measurement (GPM) Microwave Imager (GMI) and dual-frequency precipitation radar (DPR) are designed to provide the most accurate instantaneous precipitation estimates currently available from space. The GPM Combined Radar–Radiometer Algorithm (CORRA) plays a key role in this process by retrieving precipitation profiles that are consistent with GMI and DPR measurements; therefore, it is desirable that the forward models in CORRA use the same geophysical input parameters. This study explores the feasibility of using internally consistent emissivity and surface backscatter cross-sectional (
Abstract
The Goddard profiling algorithm has evolved from a pseudoparametric algorithm used in the current TRMM operational product (GPROF 2010) to a fully parametric approach used operationally in the GPM era (GPROF 2014). The fully parametric approach uses a Bayesian inversion for all surface types. The algorithm thus abandons rainfall screening procedures and instead uses the full brightness temperature vector to obtain the most likely precipitation state. This paper offers a complete description of the GPROF 2010 and GPROF 2014 algorithms and assesses the sensitivity of the algorithm to assumptions related to channel uncertainty as well as ancillary data. Uncertainties in precipitation are generally less than 1%–2% for realistic assumptions in channel uncertainties. Consistency among different radiometers is extremely good over oceans. Consistency over land is also good if the diurnal cycle is accounted for by sampling GMI product only at the time of day that different sensors operate. While accounting for only a modest amount of the total precipitation, snow-covered surfaces exhibit differences of up to 25% between sensors traceable to the availability of high-frequency (166 and 183 GHz) channels. In general, comparisons against early versions of GPM’s Ku-band radar precipitation estimates are fairly consistent but absolute differences will be more carefully evaluated once GPROF 2014 is upgraded to use the full GPM-combined radar–radiometer product for its a priori database. The combined algorithm represents a physically constructed database that is consistent with both the GPM radars and the GMI observations, and thus it is the ideal basis for a Bayesian approach that can be extended to an arbitrary passive microwave sensor.
Abstract
The Goddard profiling algorithm has evolved from a pseudoparametric algorithm used in the current TRMM operational product (GPROF 2010) to a fully parametric approach used operationally in the GPM era (GPROF 2014). The fully parametric approach uses a Bayesian inversion for all surface types. The algorithm thus abandons rainfall screening procedures and instead uses the full brightness temperature vector to obtain the most likely precipitation state. This paper offers a complete description of the GPROF 2010 and GPROF 2014 algorithms and assesses the sensitivity of the algorithm to assumptions related to channel uncertainty as well as ancillary data. Uncertainties in precipitation are generally less than 1%–2% for realistic assumptions in channel uncertainties. Consistency among different radiometers is extremely good over oceans. Consistency over land is also good if the diurnal cycle is accounted for by sampling GMI product only at the time of day that different sensors operate. While accounting for only a modest amount of the total precipitation, snow-covered surfaces exhibit differences of up to 25% between sensors traceable to the availability of high-frequency (166 and 183 GHz) channels. In general, comparisons against early versions of GPM’s Ku-band radar precipitation estimates are fairly consistent but absolute differences will be more carefully evaluated once GPROF 2014 is upgraded to use the full GPM-combined radar–radiometer product for its a priori database. The combined algorithm represents a physically constructed database that is consistent with both the GPM radars and the GMI observations, and thus it is the ideal basis for a Bayesian approach that can be extended to an arbitrary passive microwave sensor.
Abstract
In this paper, the operational Global Precipitation Measurement (GPM) mission combined radar–radiometer algorithm is thoroughly described. The operational combined algorithm is designed to reduce uncertainties in GPM Core Observatory precipitation estimates by effectively integrating complementary information from the GPM Dual-Frequency Precipitation Radar (DPR) and the GPM Microwave Imager (GMI) into an optimal, physically consistent precipitation product. Although similar in many respects to previously developed combined algorithms, the GPM combined algorithm has several unique features that are specifically designed to meet the GPM objectives of deriving, based on GPM Core Observatory information, accurate and physically consistent precipitation estimates from multiple spaceborne instruments, and ancillary environmental data from reanalyses. The algorithm features an optimal estimation framework based on a statistical formulation of the Gauss–Newton method, a parameterization for the nonuniform distribution of precipitation within the radar fields of view, a methodology to detect and account for multiple scattering in Ka-band DPR observations, and a statistical deconvolution technique that allows for an efficient sequential incorporation of radiometer information into DPR precipitation retrievals.
Abstract
In this paper, the operational Global Precipitation Measurement (GPM) mission combined radar–radiometer algorithm is thoroughly described. The operational combined algorithm is designed to reduce uncertainties in GPM Core Observatory precipitation estimates by effectively integrating complementary information from the GPM Dual-Frequency Precipitation Radar (DPR) and the GPM Microwave Imager (GMI) into an optimal, physically consistent precipitation product. Although similar in many respects to previously developed combined algorithms, the GPM combined algorithm has several unique features that are specifically designed to meet the GPM objectives of deriving, based on GPM Core Observatory information, accurate and physically consistent precipitation estimates from multiple spaceborne instruments, and ancillary environmental data from reanalyses. The algorithm features an optimal estimation framework based on a statistical formulation of the Gauss–Newton method, a parameterization for the nonuniform distribution of precipitation within the radar fields of view, a methodology to detect and account for multiple scattering in Ka-band DPR observations, and a statistical deconvolution technique that allows for an efficient sequential incorporation of radiometer information into DPR precipitation retrievals.