Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: S. Wang x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
J. M. Toole, R. C. Millard, Z. Wang, and S. Pu

Abstract

Hydrographic surveys were conducted off the Philippine coast in September 1987 and April 1988 as part of the United States/People's Republic of China cooperative research program. These cruises sampled the western Pacific Ocean where the North Equatorial Current (NEC) meets the western boundary and divides into the Kuroshio and Mindanao Currents. The requirement for mass conservation within a region enclosed by stations is utilized here to obtain absolute circulation fields for the two surveys. In both realizations, the surface flow of the NEC was observed to bifurcate near latitude 13°N; NEC flow poleward of this latitude turned north as the Kuroshio while flow to the south fed the Mindanao Current. Most striking was a twofold increase in the strength of the current system in spring 1988 as compared with fall 1987. We note that the observations in fall 1987 were obtained during the height of the 1986/87 El Niño, while those in spring 1988 were during a cold phase of the El Niño/Southern Oscillation. It is not clear how the observed current changes relate to the evolution of this event. The potential vorticity (Q) distributions of the surface waters were examined to explore the dynamics of the bifurcation. Within the NEC, Q was nearly constant (layer thickness change balanced meridional planetary vorticity variation). Within the Kuroshio and Mindanao currents, near constant Q (with magnitude comparable to that in the NEC) was also found with a balance between relative vorticity variation and layer depth change as would be expected for inertia] boundary currents.

Full access
D. W. Wang, H. W. Wijesekera, E. Jarosz, W. J. Teague, and W. S. Pegau

Abstract

Breaking surface waves generate layers of bubble clouds as air parcels entrain into the upper ocean through the action of turbulent motions. The turbulent diffusivity in the bubble cloud layer is investigated by combining measurements of surface winds, waves, bubble acoustic backscatter, currents, and hydrography. These measurements were made at water depths of 60–90 m on the shelf of the Gulf of Alaska near Kayak Island during late December 2012, a period when the ocean was experiencing winds and significant wave heights up to 22 m s−1 and 9 m, respectively. Vertical profiles of acoustic backscatter decayed exponentially from the wave surface with e-folding lengths of about 0.6 to 6 m, while the bubble penetration depths were about 3 to 30 m. Both e-folding lengths and bubble depths were highly correlated with surface wind and wave conditions. The turbulent diffusion coefficients, inferred from e-folding length and bubble depth, varied from about 0.01 to 0.4 m2 s−1. Analysis suggests that the turbulent diffusivity in the bubble layer can be parameterized as a function of the cube of the wind friction velocity with a proportionality coefficient that depends weakly on wave age. Furthermore, in the bubble layer, on average, the shear production of the turbulent kinetic energy estimated by the diffusion coefficients is a similar order of magnitude as the dissipation rate predicted by the wall boundary layer theory.

Full access
Minyang Wang, Shang-Ping Xie, Samuel S. P. Shen, and Yan Du

Abstract

Mesoscale activities over the equatorial Pacific Ocean are dominated by the Rossby and Yanai modes of tropical instability waves (TIWs). The TIW-induced surface velocity has not been accurately estimated in previous diagnostic models, especially for the meridional component across the equator. This study develops a diagnostic model that retains the acceleration terms to estimate the TIW surface velocity from the satellite-observed sea surface height. Validated against moored observations, the velocity across the equator is accurately estimated for the first time, much improved from existing products. The results identify the Rossby- and Yanai-mode TIWs as the northwest–southeastward (NW–SE) velocity oscillations north of the equator and the northeast–southwestward (NE–SW) velocity oscillations on the equator, respectively. Barotropic instability is the dominant energy source of the two TIW modes. The NE–SW velocity oscillation of the Yanai mode is associated with the counterclockwise shear of the South Equatorial Current on the equator. The two TIW modes induce different sea surface temperature patterns and vertical motions. Accurate estimates of TIW velocity are important for studying equatorial ocean dynamics and climate variability in the tropical Pacific Ocean.

Restricted access
Q. Wang, J. A. Kalogiros, S. R. Ramp, J. D. Paduan, G. Buzorius, and H. Jonsson

Abstract

Aircraft measurements obtained during the 2003–04 Autonomous Ocean Sampling Network (AOSN-II) project were used to study the effect of small-scale variations of near-surface wind stress on coastal upwelling in the area of Monterey Bay. Using 5-km-long measurement segments at 35 m above the sea surface, wind stress and its curl were calculated with estimated accuracy of 0.02–0.03 N m−2 and 0.1–0.2 N m−2 per 100 kilometers, respectively. The spatial distribution of wind speed, wind stress, stress curl, and sea surface temperature were analyzed for four general wind conditions: northerly or southerly wind along the coastline, onshore flow, and offshore flow. Wind stress and speed maxima frequently were found to be noncollocated as bulk parameterizations imply owing to significant stability and nonhomogeneity effects at cold SST pools. The analyses revealed that complicated processes with different time scales (wind stress field variation, ocean response and upwelling, sea surface currents, and heating by solar radiation) affect the coastal sea surface temperature. It was found that the stress-curl-induced coastal upwelling only dominates in events during which positive curl extended systematically over a significant area (scales larger than 20 km). These events included cases with a northerly wind, which resulted in an expansion fan downstream from Point Año Nuevo (wind speed peaks greater than about 8–10 m s−1), and cases with an offshore/onshore flow, which are characterized by weak background upwelling due to Ekman transport. However, in general, observations show that cold pools of sea surface temperature in the central area of Monterey Bay were advected by ocean surface currents from strong upwelling regions. Aircraft vertical soundings taken in the bay area showed that dominant effects of the lee wave sheltering of coastal mountains resulted in weak atmospheric turbulence and affected the development of the atmospheric boundary layer. This effect causes low wind stress that limits upwelling, especially at the northern part of Monterey Bay. The sea surface temperature is generally warm in this part of the bay because of the shallow oceanic surface layer and solar heating of the upper ocean.

Full access
C. A. Luecke, H. W. Wijesekera, E. Jarosz, D. W. Wang, J. C. Wesson, S. U. P. Jinadasa, H. J. S. Fernando, and W. J. Teague

Abstract

Long-term measurements of turbulent kinetic energy dissipation rate (ε), and turbulent temperature variance dissipation rate (χ T) in the thermocline, along with currents, temperature, and salinity were made at two subsurface moorings in the southern Bay of Bengal (BoB). This is a part of a major international program, conducted between July 2018 and June 2019, for investigating the role of the BoB on the monsoon intraseasonal oscillations. One mooring was located on the typical path of the Southwest Monsoon Current (SMC), and the other was in a region where the Sri Lanka dome is typically found during the summer monsoon. Microstructure and finescale estimates of vertical diffusivity revealed the long-term subthermocline mixing patterns in the southern BoB. Enhanced turbulence and large eddy diffusivities were observed within the SMC during the passage of a subsurface-intensified anticyclonic eddy. During this time, background shear and strain appeared to influence high-frequency motions such as near-inertial waves and internal tides, leading to increased mixing. Near the Sri Lanka dome, enhanced dissipation occurred at the margins of the cyclonic feature. Turbulent mixing was enhanced with the passage of Rossby waves and eddies. During these events, values of χ T exceeding 10−4 °C2 s−1 were recorded concurrently with ε values exceeding 10−5 W kg−1. Inferred diffusivity peaked well above background values of 10−6 m2 s−1, leading to an annually averaged diffusivity near 10−4 m2 s−1. Turbulence appeared low throughout much of the deployment period. Most of the mixing occurred in spurts during isolated events.

Restricted access
H. W. Wijesekera, W. J. Teague, D. W. Wang, E. Jarosz, T. G. Jensen, S. U. P. Jinadasa, H. J. S. Fernando, and Z. R. Hallock

Abstract

High-resolution currents and hydrographic fields were measured at six deep-water moorings in the southern Bay of Bengal (BoB) by the Naval Research Laboratory as part of an international effort focused on the dynamics of the Indian Ocean. Currents, temperature, and salinity were sampled over the upper 500 m for 20 months between December 2013 and August 2015. One of the major goals is to understand the space–time scales of the currents and physical processes that contribute to the exchange of water between the BoB and the Arabian Sea. The observations captured Southwest and Northeast Monsoon Currents, seasonally varying large eddies including a cyclonic eddy, the Sri Lanka dome (SLD), and an anticyclonic eddy southeast of the SLD. The observations further showed intraseasonal oscillations with periods of 30–70 days, near-inertial currents, and tides. Monthly averaged velocities commonly exceeded 50 cm s−1 near the surface, and extreme velocities exceeded 150 cm s−1 during the southwest monsoon. Tides were small and dominated by the M2 component with velocities of about 3 cm s−1. The average transport into the BoB over the measurement period was 2 Sv (1 Sv ≡ 106 m3 s−1) but likely exceeded 15 Sv during summer of 2014. This study suggests the water exchange away from coastal boundaries, in the interior of the BoB, may be largely influenced by the location and strength of the two eddies that modify the path of the Southwest Monsoon Current. In addition, there is a pathway below 200 m for transport of water into the BoB throughout the year.

Full access
H. W. Wijesekera, E. Jarosz, W. J. Teague, D. W. Wang, D. B. Fribance, J. N. Moum, and S. J. Warner

Abstract

Pressure differences across topography generate a form drag that opposes the flow in the water column, and viscous and pressure forces acting on roughness elements of the topographic surface generate a frictional drag on the bottom. Form drag and bottom roughness lengths were estimated over the East Flower Garden Bank (EFGB) in the Gulf of Mexico by combining an array of bottom pressure measurements and profiles of velocity and turbulent kinetic dissipation rates. The EFGB is a coral bank about 6 km wide and 10 km long located at the shelf edge that rises from 100-m water depth to about 18 m below the sea surface. The average frictional drag coefficient over the entire bank was estimated as 0.006 using roughness lengths that ranged from 0.001 cm for relatively smooth portions of the bank to 1–10 cm for very rough portions over the corals. The measured form drag over the bank showed multiple time-scale variability. Diurnal tides and low-frequency motions with periods ranging from 4 to 17 days generated form drags of about 2000 N m−1 with average drag coefficients ranging between 0.03 and 0.22, which are a factor of 5–35 times larger than the average frictional drag coefficient. Both linear wave and quadratic drag laws have similarities with the observed form drag. The form drag is an important flow retardation mechanism even in the presence of the large frictional drag associated with coral reefs and requires parameterization.

Full access
H. W. Wijesekera, D. W. Wang, E. Jarosz, W. J. Teague, W. S. Pegau, and J. N. Moum

Abstract

Momentum transport by energy-containing turbulent eddies in the oceanic mixed layer were investigated during high-wind events in the northern Gulf of Alaska off Kayak Island. Sixteen high-wind events with magnitudes ranging from 7 to 22 m s−1 were examined. Winds from the southeast prevailed from one to several days with significant wave heights of 5–9 m and turbulent Langmuir numbers of about 0.2–0.4. Surface buoyancy forcing was much weaker than the wind stress forcing. The water column was well mixed to the bottom depth of about 73 m. Spectral analyses indicate that a major part of the turbulent momentum flux was concentrated on 10–30-min time scales. The ratio of horizontal scale to mixed layer depth was from 2 to 8. Turbulent shear stresses in the mixed layer were horizontally asymmetric. The downwind turbulent stress at 10–20 m below the surface was approximately 40% of the averaged wind stress and was reduced to 5%–10% of the wind stress near the bottom. Turbulent kinetic energy in the crosswind direction was 30% larger than in the downwind direction and an order of magnitude larger than the vertical component. The averaged eddy viscosity between 10- and 30-m depth was ~0.1 m2 s−1, decreased with depth rapidly below 50 m, and was ~5 × 10−3 m2 s−1 at 5 m above the bottom. The divergence of turbulent shear stress accelerated the flow during the early stages of wind events before Coriolis and pressure gradient forces became important.

Full access
Shuwen Tan, Larry J. Pratt, Dongliang Yuan, Xiang Li, Zheng Wang, Yao Li, Corry Corvianawatie, Dewi Surinati, Asep S. Budiman, and Ahmad Bayhaqi

Abstract

Hydrographic measurements recently acquired along the thalweg of the Lifamatola Passage combined with historical moored velocity measurements immediately downstream of the sill are used to study the hydraulics, transport, mixing, and entrainment in the dense overflow. The observations suggest that the mean overflow is nearly critical at the mooring site, suggesting that a weir formula may be appropriate for estimating the overflow transport. Our assessment suggests that the weir formulas corresponding to a rectangular, triangular, or parabolic cross section all result in transports very close to the observation, suggesting their potential usage in long-term monitoring of the overflow transport or parameterizing the transport in numerical models. Analyses also suggest that deep signals within the overflow layer are blocked by the shear flow from propagating upstream, whereas the shallow wave modes of the full-depth continuously stratified flow are able to propagate upstream from the Banda Sea into the Maluku Sea. Strong mixing is found immediately downstream of the sill crest, with Thorpe-scale-based estimates of the mean dissipation rate within the overflow up to 1.1 × 10−7 W kg−1 and the region-averaged diapycnal diffusivity within the downstream overflow in the range of 2.3 × 10−3 to 10.1 × 10−3 m2 s−1. Mixing in the Lifamatola Passage results in 0.6–1.2-Sv (1 Sv ≡ 106 m3 s−1) entrainment transport added to the overflow, enhancing the deep-water renewal in the Banda Sea. A bulk diffusivity coefficient estimated in the deep Banda Sea yields 1.6 × 10−3 ± 5 × 10−4 m2 s−1, with an associated downward turbulent heat flux of 9 W m−2.

Restricted access