Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Scott Applequist x
  • Journal of Atmospheric and Oceanic Technology x
  • All content x
Clear All Modify Search
Anthony Arguez and Scott Applequist

Abstract

NOAA released the new 1981–2010 climate normals in July 2011. These included monthly and daily normals of minimum and maximum temperature. Monthly normals were computed from monthly temperature values that were corrected for biases (i.e., homogenized) due to changes in observing practices over the course of the normals period (station moves, changes in observation time, and changes in instrumentation). Daily temperature observations, however, are not homogenized, which could lead to inconsistencies between the daily and monthly normals. This study offers a constrained harmonic technique that forces the daily temperature normals to be consistent with the monthly temperature normals. This approach replaces the cubic spline interpolation of monthly temperature normals that was used to compute earlier versions of NOAA's daily temperature normals. It effectively passes the homogenization applied at the monthly scale down to the daily scale, resulting in a smooth annual cycle devoid of day-to-day sampling variability and intermonth discontinuities.

Full access
Imke Durre, Xungang Yin, Russell S. Vose, Scott Applequist, and Jeff Arnfield

Abstract

The Integrated Global Radiosonde Archive (IGRA) is a collection of historical and near-real-time radiosonde and pilot balloon observations from around the globe. Consisting of a foundational dataset of individual soundings, a set of sounding-derived parameters, and monthly means, the collection is maintained and distributed by the National Oceanic and Atmospheric Administration’s National Centers for Environmental Information (NCEI). It has been used in a variety of applications, including reanalysis projects, assessments of tropospheric and stratospheric temperature and moisture trends, a wide range of studies of atmospheric processes and structures, and as validation of observations from other observing platforms. In 2016, NCEI released version 2 of the dataset, IGRA 2, which incorporates data from a considerably greater number of data sources, thus increasing the data volume by 30%, extending the data back in time to as early as 1905, and improving the spatial coverage. To create IGRA 2, 40 data sources were converted into a common data format and merged into one coherent dataset using a newly designed suite of algorithms. Then, an overhauled version of the IGRA 1 quality-assurance system was applied to the integrated data. Last, monthly means and sounding-by-sounding moisture and stability parameters were derived from the new dataset. All of these components are updated on a regular basis and made available for download free of charge on the NCEI website.

Full access