Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Scott Applequist x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
Scott Applequist, Anthony Arguez, Imke Durre, Michael F. Squires, Russell S. Vose, and Xungang Yin

The 1981–2010 U.S. Climate Normals released by the National Oceanic and Atmospheric Administration's (NOAA) National Climatic Data Center (NCDC) include a suite of descriptive statistics based on hourly observations. For each hour and day of the year, statistics of temperature, dew point, mean sea level pressure, wind, clouds, heat index, wind chill, and heating and cooling degree hours are provided as 30-year averages, frequencies of occurrence, and percentiles. These hourly normals are available for 262 locations, primarily major airports, from across the United States and its Pacific territories. We encourage use of these products specifically for examination of the diurnal cycle of a particular variable, and how that change may shift over the annual cycle.

Full access
Anthony Arguez, Imke Durre, Scott Applequist, Russell S. Vose, Michael F. Squires, Xungang Yin, Richard R. Heim Jr., and Timothy W. Owen

The National Oceanic and Atmospheric Administration (NOAA) released the 1981–2010 U.S. Climate Normals in July 2011, representing the latest decadal installment of this long-standing product line. Climatic averages (and other statistics) of temperature, precipitation, snowfall, and numerous derived quantities were calculated for ~9,800 stations operated by the U.S. National Weather Service (NWS). They include estimated normals, or “quasi normals,” for approximately 2,000 active short-record stations such as those in the U.S. Climate Reference Network. The 1981–2010 installment features several new products and methodological enhancements: 1) state-of-the-art temperature homogenization at the monthly scale, 2) extensive utilization of quality-controlled daily climate data, 3) new statistical approaches for calculating daily temperature normals and heating and cooling degree days, and 4) a comprehensive suite of precipitation, snowfall, and snow depth statistics. This paper provides a general overview of this new suite of climate normals products.

Full access
Russell S. Vose, Scott Applequist, Mark A. Bourassa, Sara C. Pryor, Rebecca J. Barthelmie, Brian Blanton, Peter D. Bromirski, Harold E. Brooks, Arthur T. DeGaetano, Randall M. Dole, David R. Easterling, Robert E. Jensen, Thomas R. Karl, Richard W. Katz, Katherine Klink, Michael C. Kruk, Kenneth E. Kunkel, Michael C. MacCracken, Thomas C. Peterson, Karsten Shein, Bridget R. Thomas, John E. Walsh, Xiaolan L. Wang, Michael F. Wehner, Donald J. Wuebbles, and Robert S. Young

This scientific assessment examines changes in three climate extremes—extratropical storms, winds, and waves—with an emphasis on U.S. coastal regions during the cold season. There is moderate evidence of an increase in both extratropical storm frequency and intensity during the cold season in the Northern Hemisphere since 1950, with suggestive evidence of geographic shifts resulting in slight upward trends in offshore/coastal regions. There is also suggestive evidence of an increase in extreme winds (at least annually) over parts of the ocean since the early to mid-1980s, but the evidence over the U.S. land surface is inconclusive. Finally, there is moderate evidence of an increase in extreme waves in winter along the Pacific coast since the 1950s, but along other U.S. shorelines any tendencies are of modest magnitude compared with historical variability. The data for extratropical cyclones are considered to be of relatively high quality for trend detection, whereas the data for extreme winds and waves are judged to be of intermediate quality. In terms of physical causes leading to multidecadal changes, the level of understanding for both extratropical storms and extreme winds is considered to be relatively low, while that for extreme waves is judged to be intermediate. Since the ability to measure these changes with some confidence is relatively recent, understanding is expected to improve in the future for a variety of reasons, including increased periods of record and the development of “climate reanalysis” projects.

Full access