Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: Steven Businger x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
Steven Businger

Abstract

This paper makes a case for why Hawaii is the rainbow capital of the world. It begins by briefly touching on the cultural and historical significance of rainbows in Hawaii. Next it provides an overview of the science behind the rainbow phenomenon, which provides context for exploring the meteorology that helps explain the prevalence of Hawaiian rainbows. Last, the paper discusses the art and science of chasing rainbows.

Full access
Roland Stull and Steven Businger

To document the inner workings of graduate degree programs, the authors surveyed the 67 American and Canadian universities that grant Doctor of Philosophy (Ph.D.) and/or Master of Science (M.S.) degrees in the atmospheric sciences and related fields. Topics included (a) admission standards such as graduate record exam scores and grade point averages; (b) start-up issues such as course requirements and computer programming skills; (c) M.S. attributes such as thesis length, years until graduation, and thesis versus nonthesis options; (d) Ph.D. procedures such as exam sequences and timing, thesis page length, workplace ethics and teamwork, and development of teaching skills; and (e) employment after graduation. This information could aid university departments in their future program planning.

Full access
Norbert Schörghofer, Steven Businger, and Matthias Leopold

Abstract

The coldest places on the Hawaiian island chain are not on the very summits of its tallest volcanoes, Mauna Kea (19.82°N; 4,207 m) and Mauna Loa (19.48°N; 4,169 m), but within craters and caves with perennial ice. Here, we explore unique microclimates in the alpine stone deserts of two tropical island volcanoes, report new temperature extremes for Hawaii, and study the role of microclimates in the preservation of perennial ice bodies. Nocturnal cold-air pools are common in the craters and are responsible for the coldest temperature ever reported from the Hawaiian Islands (–20°C). These cold-air pools are not frequent enough to substantially affect the annual heat budget of the ground, but cold air is frequently trapped between boulders and contributes to freezing conditions in this way. Perennial ice is found beneath even warmer environments in lava tube caves. The lowest annual-mean temperature (–0.7°C) was measured at the distal end of a spectacular ice cave on Mauna Loa, where the outside air temperature averages +8°C. In the current climate, the outside temperature rarely falls below freezing, so the air’s sensible heat cannot contribute to freezing conditions. Considering the effect of recent climate warming and the buoyancy of humid air, cold air that flowed down the lava tubes in winter nights, combined with sublimation cooling, is still a plausible explanation for the perennial ice ponds found there.

Open access
William H. Bauman III and Steven Businger

Space shuttle launches and landings at Kennedy Space Center (KSC) are subject to strict weather-related launch commit criteria and landing weather flight rules. Complex launch commit criteria and end-of-mission landing weather flight rules demand very accurate forecasts and nowcasts (short-term forecasts of less than 2 h) of cloud, wind, visibility, precipitation, turbulence, and thunderstorms prior to shuttle launches and landings.

The challenges to the National Weather Service Spaceflight Meteorology Group forecasters at Johnson Space Center to nowcast and forecast for space shuttle landings and evaluate the landing weather flight rules are discussed. This paper focuses on the forecasts and nowcasts required for a normal end-of-mission and three scenarios for abort landings of a space shuttle at KSC. Specific weather requirements for a potential emergency landing are the dominant cause of weather-related delays to space shuttle launches. Some examples of meteorological techniques and technologies in support of space shuttle landing operations are reviewed. Research to improve nowcasting convective activity in the Cape Canaveral vicinity is discussed, and the particular forecast problem associated with landing a space shuttle during easterly flow regimes is addressed.

Full access
Steven Businger, M. Puakea Nogelmeier, Pauline W. U. Chinn, and Thomas Schroeder

Abstract

High literacy rates among Native Hawaiians in the nineteenth century and publication of more than 100 Hawaiian-language newspapers from 1834 to 1948 produced the largest archive of indigenous writing in the Western Hemisphere. These newspapers extend our knowledge of historical environmental events and natural disasters back into the early nineteenth century and deeper into precontact times. Articles reporting observations of meteorological events allowed the authors to reconstruct the track and intensity of an 1871 hurricane that brought devastation to the islands of Hawaii and Maui and to discern historical patterns of droughts and floods in Hawaii. These findings illustrate the value of Hawaiian-language newspapers as resources for science research and science education.

Open access
Steven Businger, Roy Huff, Andre Pattantyus, Keith Horton, A. Jeff Sutton, Tamar Elias, and Tiziana Cherubini

Abstract

Emissions from Kīlauea volcano, known locally as “vog” for volcanic smog, pose significant environmental and health risks to the Hawaiian community. The Vog Measurement and Prediction (VMAP) project was conceived to help mitigate the negative impacts of Kīlauea’s emissions. To date, the VMAP project has achieved the following milestones: i) created a custom application of the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT, hereafter Vog model) to produce statewide forecasts of the concentration and dispersion of sulfur dioxide (SO2) and sulfate aerosol from Kīlauea volcano; ii) developed an ultraviolet (UV) spectrometer array to provide near-real-time volcanic gas emission rate measurements for use as input into the Vog model; iii) developed and deployed a stationary array of ambient SO2 and meteorological sensors to record the spatial characteristics of Kīlauea’s gas plume in high temporal and spatial resolution for model verification; and iv) developed web-based tools to facilitate the dissemination of observations and model forecasts to provide guidance for safety officials and the public, and to raise awareness of the potential hazards of volcanic emissions to respiratory health, agriculture, and general aviation.

Wind fields and thermodynamic data from the Weather Research and Forecasting (WRF) Model provide input to the Vog model, with a statewide grid spacing of 3 km and a 1-km grid covering the island of Hawaii. Validation of the Vog model forecasts is accomplished with reference to data from Hawaii State Department of Health ground-based air quality monitors. VMAP results show that this approach can provide useful guidance for the people of Hawaii.

Full access
Malte F. Stuecker, Christina Karamperidou, Alison D. Nugent, Giuseppe Torri, Sloan Coats, and Steven Businger
Full access
Gerald Geernaert, Steven Businger, Christopher Jeffery, Thomas Dunn, Russ Elsberry, and Don MacGorman

Abstract

No Abstract available.

Full access
Steven Businger, Steven R. Chiswell, Michael Bevis, Jingping Duan, Richard A. Anthes, Christian Rocken, Randolph H. Ware, Michael Exner, T. VanHove, and Fredrick S. Solheim

This paper provides an overview of applications of the Global Positioning System (GPS) for active measurement of the Earth's atmosphere. Microwave radio signals transmitted by GPS satellites are delayed (refracted) by the atmosphere as they propagate to Earth-based GPS receivers or GPS receivers carried on low Earth orbit satellites.

The delay in GPS signals reaching Earth-based receivers due to the presence of water vapor is nearly proportional to the quantity of water vapor integrated along the signal path. Measurement of atmospheric water vapor by Earth-based GPS receivers was demonstrated during the GPS/STORM field project to be comparable and in some respects superior to measurements by ground-based water vapor radiometers. Increased spatial and temporal resolution of the water vapor distribution provided by the GPS/STORM network proved useful in monitoring the moisture-flux convergence along a dryline and the decrease in integrated water vapor associated with the passage of a midtropospheric cold front, both of which triggered severe weather over the area during the course of the experiment.

Given the rapid growth in regional networks of continuously operating Earth-based GPS receivers currently being implemented, an opportunity exists to observe the distribution of water vapor with increased spatial and temporal coverage, which could prove valuable in a range of operational and research applications in the atmospheric sciences.

The first space-based GPS receiver designed for sensing the Earth's atmosphere was launched in April 1995. Phase measurements of GPS signals as they are occluded by the atmosphere provide refractivity profiles (see the companion article by Ware et al. on page 19 of this issue). Water vapor limits the accuracy of temperature recovery below the tropopause because of uncertainty in the water vapor distribution. The sensitivity of atmospheric refractivity to water vapor pressure, however, means that refractivity profiles can in principle yield information on the atmospheric humidity distribution given independent information on the temperature and pressure distribution from NWP models or independent observational data.

A discussion is provided of some of the research opportunities that exist to capitalize on the complementary nature of the methods of active atmospheric monitoring by GPS and other observation systems for use in weather and climate studies and in numerical weather prediction models.

Full access