Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Tangdong Qu x
  • Journal of Climate x
  • All content x
Clear All Modify Search
Kai Yu and Tangdong Qu

Abstract

Analysis of the 62-yr hindcast outputs from an eddy-resolving ocean general circulation model reveals a prominent decadal variability in the upper-layer (0–745 m) Luzon Strait transport (LST), a key component of the South China Sea throughflow. This variability is in phase with the basin-scale wind stress anomalies associated with the Pacific decadal oscillation (PDO). A composite analysis shows that during the positive phase of the PDO, the Aleutian low and its related positive wind stress curl anomalies intrude southward, reducing the trade winds and enhancing the westerly wind anomalies in the tropical North Pacific. In response, the North Equatorial Current bifurcation shifts northward, resulting in a weaker Kuroshio east of Luzon and consequently a stronger South China Sea throughflow in the upper 745 m.

Full access
Yan Du, Tangdong Qu, and Gary Meyers

Abstract

Using results from the Simple Ocean Data Assimilation (SODA), this study assesses the mixed layer heat budget to identify the mechanisms that control the interannual variation of sea surface temperature (SST) off Java and Sumatra. The analysis indicates that during the positive Indian Ocean Dipole (IOD) years, cold SST anomalies are phase locked with the season cycle. They may exceed −3°C near the coast of Sumatra and extend as far westward as 80°E along the equator. The depth of the thermocline has a prominent influence on the generation and maintenance of SST anomalies. In the normal years, cooling by upwelling–entrainment is largely counterbalanced by warming due to horizontal advection. In the cooling episode of IOD events, coastal upwelling–entrainment is enhanced, and as a result of mixed layer shoaling, the barrier layer no longer exists, so that the effect of upwelling–entrainment can easily reach the surface mixed layer. Horizontal advection spreads the cold anomaly to the interior tropical Indian Ocean. Near the coast of Java, the northern branch of an anomalous anticyclonic circulation spreads the cold anomaly to the west near the equator. Both the anomalous advection and the enhanced, wind-driven upwelling generate the cold SST anomaly of the positive IOD. At the end of the cooling episode, the enhanced surface thermal forcing overbalances the cooling effect by upwelling/entrainment, and leads to a warming in SST off Java and Sumatra.

Full access
Tangdong Qu, Yoo Yin Kim, Max Yaremchuk, Tomoki Tozuka, Akio Ishida, and Toshio Yamagata

Abstract

The Luzon Strait transport (LST) from the Pacific into the South China Sea (SCS) is examined using results from a high-resolution ocean general circulation model. The LST from the model has a mean value of 2.4 Sv (Sv ≡ 106 m3 s−1) and reaches its seasonal maximum (6.1 Sv westward) in winter and seasonal minimum (0.9 Sv eastward) in summer. Both the annual mean and seasonal variation of LST compare favorably with earlier observations. On an interannual time scale, LST tends to be higher during El Niño years and lower during La Niña years, with its maximum (minimum) leading the mature phase of El Niño (La Niña) by 1 month. The interannual variation of LST appears to be oppositely phased with the Kuroshio transport east of Luzon, indicating a possible nonlinear hysteresis of the Kuroshio as a driving mechanism of LST. For the annual average, water leaving the SCS in the south is of higher temperature than that with LST, thus producing a cooling advection in the upper 405 m equivalent to a surface heat flux of −19 W m−2. Most of this cooling advection is balanced by the atmospheric heating (17 W m−2). From late spring to early fall, surface heat flux is the primary heating process; only a small part of the heat content change can be explained by heat advection. But, in winter, heat advection seems to be the only important process responsible for the cooling in the upper layer of the SCS. The interannual variation of the upper-layer heat content has a strong signature of ENSO, cooling in the development of El Niño and warming in the development of La Niña. An oceanic connection is revealed, in which LST seems to be a key process conveying the impact of the Pacific ENSO into the SCS.

Full access