Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Tanya Brown-Giammanco x
  • Journal of Applied Meteorology and Climatology x
  • All content x
Clear All Modify Search
Zhiyuan Jiang, Matthew R. Kumjian, Robert S. Schrom, Ian Giammanco, Tanya Brown-Giammanco, Heather Estes, Ross Maiden, and Andrew J. Heymsfield

Abstract

Severe (>2.5 cm) hail causes >$5 billion in damage annually in the United States. However, radar sizing of hail remains challenging. Typically, spheroids are used to represent hailstones in radar forward operators and to inform radar hail-sizing algorithms. However, natural hailstones can have irregular shapes and lobes; these details significantly influence the hailstone’s scattering properties. The high-resolution 3D structure of real hailstones was obtained using a laser scanner for hail collected during the 2016–17 Insurance Institute for Business and Home Safety (IBHS) Hail Field Study. Plaster casts of several record hailstones (e.g., Vivian, South Dakota, 2010) were also scanned. The S-band scattering properties of these hailstones were calculated with the discrete dipole approximation (DDA). For comparison, scattering properties of spheroidal approximations of each hailstone (with identical maximum and minimum dimensions and mass) were calculated with the T matrix. The polarimetric radar variables have errors when using spheroids, even for small hail. Spheroids generally have smaller variations in the polarimetric variables than the real hailstones. This increased variability is one reason why the correlation coefficient tends to be lower in observations than in forward-simulated cases using spheroids. Backscatter differential phase δ also is found to have large variance, particularly for large hailstones. Irregular hailstones with a thin liquid layer produce enhanced and more variable values for reflectivity factor at horizontal polarization Z HH, differential reflectivity Z DR, specific differential phase K DP, linear depolarization ratio (LDR), and δ compared with dry hailstones; is also significantly reduced.

Full access