Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Thomas F. Eck x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Oleg Dubovik, Brent Holben, Thomas F. Eck, Alexander Smirnov, Yoram J. Kaufman, Michael D. King, Didier Tanré, and Ilya Slutsker

Abstract

Aerosol radiative forcing is a critical, though variable and uncertain, component of the global climate. Yet climate models rely on sparse information of the aerosol optical properties. In situ measurements, though important in many respects, seldom provide measurements of the undisturbed aerosol in the entire atmospheric column. Here, 8 yr of worldwide distributed data from the AERONET network of ground-based radiometers were used to remotely sense the aerosol absorption and other optical properties in several key locations. Established procedures for maintaining and calibrating the global network of radiometers, cloud screening, and inversion techniques allow for a consistent retrieval of the optical properties of aerosol in locations with varying emission sources and conditions. The multiyear, multi-instrument observations show robust differentiation in both the magnitude and spectral dependence of the absorption—a property driving aerosol climate forcing, for desert dust, biomass burning, urban–industrial, and marine aerosols. Moreover, significant variability of the absorption for the same aerosol type appearing due to different meteorological and source characteristics as well as different emission characteristics are observed. It is expected that this aerosol characterization will help refine aerosol optical models and reduce uncertainties in satellite observations of the global aerosol and in modeling aerosol impacts on climate.

Full access
Alexander Smirnov, Brent N. Holben, Yoram J. Kaufman, Oleg Dubovik, Thomas F. Eck, Ilya Slutsker, Christophe Pietras, and Rangasayi N. Halthore

Abstract

Systematic characterization of aerosol over the oceans is needed to understand the aerosol effect on climate and on transport of pollutants between continents. Reported are the results of a comprehensive optical and physical characterization of ambient aerosol in five key island locations of the Aerosol Robotic Network (AERONET) of sun and sky radiometers, spanning over 2–5 yr. The results are compared with aerosol optical depths and size distributions reported in the literature over the last 30 yr. Aerosol found over the tropical Pacific Ocean (at three sites between 20°S and 20°N) still resembles mostly clean background conditions dominated by maritime aerosol. The optical thickness is remarkably stable with mean value of τ a(500 nm) = 0.07, mode value at τ am = 0.06, and standard deviation of 0.02–0.05. The average Ångström exponent range, from 0.3 to 0.7, characterizes the wavelength dependence of the optical thickness. Over the tropical to subtropical Atlantic (two stations at 7°S and 32°N) the optical thickness is significantly higher: τ a(500 nm) = 0.14 and τ am = 0.10 due to the frequent presence of dust, smoke, and urban–industrial aerosol. For both oceans the atmospheric column aerosol is characterized by a bimodal lognormal size distribution with a fine mode at effective radius R eff = 0.11 ± 0.01 μm and coarse mode at R eff = 2.1 ± 0.3 μm. A review of the published 150 historical ship measurements from the last three decades shows that τ am was around 0.07 to 0.12 in general agreement with the present finding. The information should be useful as a test bed for aerosol global models and aerosol representation in global climate models. With global human population expansion and industrialization, these measurements can serve in the twenty-first century as a basis to assess decadal changes in the aerosol concentration, properties, and radiative forcing of climate.

Full access
Alexander Smirnov, Brent N. Holben, Oleg Dubovik, Norm T. O'Neill, Thomas F. Eck, Douglas L. Westphal, Andreas K. Goroch, Christophe Pietras, and Ilya Slutsker

Abstract

Aerosol optical depth measurements over Bahrain acquired through the ground-based Aerosol Robotic Network (AERONET) are analyzed. Optical depths obtained from ground-based sun/sky radiometers showed a pronounced temporal trend, with a maximum dust aerosol loading observed during the March–July period. The aerosol optical depth probability distribution is rather narrow with a modal value of about 0.25. The Ångström parameter frequency distribution has two peaks. One peak around 0.7 characterizes a situation when dust aerosol is more dominant, the second peak around 1.2 corresponds to relatively dust-free cases. The correlation between aerosol optical depth and water vapor content in the total atmospheric column is strong (correlation coefficient of 0.82) when dust aerosol is almost absent (Ångström parameter is greater than 0.7), suggesting possible hygroscopic growth of fine mode particles or source region correlation, and much weaker (correlation coefficient of 0.45) in the presence of dust (Ångström parameter is less than 0.7). Diurnal variations of the aerosol optical depth and precipitable water were insignificant. Ångström parameter diurnal variability (∼20%–25%) is evident during the April–May period, when dust dominated the atmospheric optical conditions. Variations in the aerosol volume size distributions retrieved from spectral sun and sky radiance data are mainly associated with the changes in the concentration of the coarse aerosol fraction (variation coefficient of 61%). Geometric mean radii for the fine and coarse aerosol fractions are 0.14 μm (std dev = 0.02) and 2.57 μm (std dev = 0.27), respectively. The geometric standard deviation of each fraction is 0.41 and 0.73, respectively. In dust-free conditions the single scattering albedo (SSA) decreases with wavelength, while in the presence of dust the SSA either stays neutral or increases slightly with wavelength. The changes in the Ångström parameter derived from a ground-based nephelometer and a collocated sun photometer during the initial checkout period were quite similar.

Full access