Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Toshihisa Matsui x
  • Journal of the Atmospheric Sciences x
  • All content x
Clear All Modify Search
Xiping Zeng, Wei-Kuo Tao, Toshihisa Matsui, Shaocheng Xie, Stephen Lang, Minghua Zhang, David O’C Starr, and Xiaowen Li


The ice crystal enhancement (IE) factor, defined as the ratio of the ice crystal to ice nuclei (IN) number concentrations for any particular cloud condition, is needed to quantify the contribution of changes in IN to global warming. However, the ensemble characteristics of IE are still unclear. In this paper, a representation of the IE factor is incorporated into a three-ice-category microphysical scheme for use in long-term cloud-resolving model (CRM) simulations. Model results are compared with remote sensing observations, which suggest that, absent a physically based consideration of how IE comes about, the IE factor in tropical clouds is about 103 times larger than that in midlatitudinal ones. This significant difference in IE between the tropics and middle latitudes is consistent with the observation of stronger entrainment and detrainment in the tropics. In addition, the difference also suggests that cloud microphysical parameterizations depend on spatial resolution (or subgrid turbulence parameterizations within CRMs).

Full access
Xiping Zeng, Wei-Kuo Tao, Scott W. Powell, Robert A. Houze Jr., Paul Ciesielski, Nick Guy, Harold Pierce, and Toshihisa Matsui


Two field campaigns, the African Monsoon Multidisciplinary Analysis (AMMA) and the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), took place in 2006 near Niamey, Niger, and Darwin, Northern Territory, Australia, providing extensive observations of mesoscale convective systems (MCSs) near a desert and a tropical coast, respectively. Under the constraint of their observations, three-dimensional cloud-resolving model simulations are carried out and presented in this paper to replicate the basic characteristics of the observed MCSs. All of the modeled MCSs exhibit a distinct structure having deep convective clouds accompanied by stratiform and anvil clouds. In contrast to the approximately 100-km-scale MCSs observed in TWP-ICE, the MCSs in AMMA have been successfully simulated with a scale of about 400 km.

These modeled AMMA and TWP-ICE MCSs offer an opportunity to understand the structure and mechanism of MCSs. Comparing the water budgets between AMMA and TWP-ICE MCSs suggests that TWP-ICE convective clouds have stronger ascent while the mesoscale ascent outside convective clouds in AMMA is stronger. A case comparison, with the aid of sensitivity experiments, also suggests that vertical wind shear and ice crystal (or dust aerosol) concentration can significantly impact stratiform and anvil clouds (e.g., their areas) in MCSs. In addition, the obtained water budgets quantitatively describe the transport of water between convective, stratiform, and anvil regions as well as water sources/sinks from microphysical processes, providing information that can be used to help determine parameters in the convective and cloud parameterizations in general circulation models (GCMs).

Full access