Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Vincent Noel x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
Andrew D. Gronewold, Vincent Fortin, Robert Caldwell, and James Noel


Monitoring, understanding, and forecasting the hydrologic cycle of large freshwater basins often requires a broad suite of data and models. Many of these datasets and models, however, are susceptible to variations in monitoring infrastructure and data dissemination protocols when watershed, political, and jurisdictional boundaries do not align. Reconciling hydrometeorological monitoring gaps and inconsistencies across the international Laurentian Great Lakes–St. Lawrence River basin is particularly challenging because of its size and because the basin’s dominant hydrologic feature is the vast surface waters of the Great Lakes.

For tens of millions of Canadian and U.S. residents that live within the Great Lakes basin, seamless binational datasets are needed to better understand and predict coastal water-level fluctuations and other conditions that could potentially threaten human and environmental health. Binational products addressing this need have historically been developed and maintained by the Coordinating Committee on Great Lakes Basic Hydraulic and Hydrologic Data (Coordinating Committee). The Coordinating Committee recently held its one-hundredth semiannual meeting and reflected on a range of historical accomplishments while setting goals for future work. This article provides a synthesis of those achievements and goals. Particularly significant legacy and recently developed datasets of the Coordinating Committee include historical Great Lakes surface water elevations, basin-scale tributary inflow to the Great Lakes, and basin-scale estimates of both over-lake and over-land precipitation. Moving forward, members of the Coordinating Committee will work toward customizing state-of-the-art hydrologic and meteorological forecasting systems across the entire Great Lakes basin and toward promoting their products and protocols as templates for successful binational coordination across other large binational freshwater basins.

Open access
Anna E. Luebke, Julien Delanoë, Vincent Noel, Hélène Chepfer, and Bjorn Stevens
Open access
Florence Rabier, Aurélie Bouchard, Eric Brun, Alexis Doerenbecher, Stéphanie Guedj, Vincent Guidard, Fatima Karbou, Vincent-Henri Peuch, Laaziz El Amraoui, Dominique Puech, Christophe Genthon, Ghislain Picard, Michael Town, Albert Hertzog, François Vial, Philippe Cocquerez, Stephen A. Cohn, Terry Hock, Jack Fox, Hal Cole, David Parsons, Jordan Powers, Keith Romberg, Joseph VanAndel, Terry Deshler, Jennifer Mercer, Jennifer S. Haase, Linnea Avallone, Lars Kalnajs, C. Roberto Mechoso, Andrew Tangborn, Andrea Pellegrini, Yves Frenot, Jean-Noël Thépaut, Anthony McNally, Gianpaolo Balsamo, and Peter Steinle

The Concordiasi project is making innovative observations of the atmosphere above Antarctica. The most important goals of the Concordiasi are as follows:

  • To enhance the accuracy of weather prediction and climate records in Antarctica through the assimilation of in situ and satellite data, with an emphasis on data provided by hyperspectral infrared sounders. The focus is on clouds, precipitation, and the mass budget of the ice sheets. The improvements in dynamical model analyses and forecasts will be used in chemical-transport models that describe the links between the polar vortex dynamics and ozone depletion, and to advance the under understanding of the Earth system by examining the interactions between Antarctica and lower latitudes.
  • To improve our understanding of microphysical and dynamical processes controlling the polar ozone, by providing the first quasi-Lagrangian observations of stratospheric ozone and particles, in addition to an improved characterization of the 3D polar vortex dynamics. Techniques for assimilating these Lagrangian observations are being developed.

A major Concordiasi component is a field experiment during the austral springs of 2008–10. The field activities in 2010 are based on a constellation of up to 18 long-duration stratospheric super-pressure balloons (SPBs) deployed from the McMurdo station. Six of these balloons will carry GPS receivers and in situ instruments measuring temperature, pressure, ozone, and particles. Twelve of the balloons will release dropsondes on demand for measuring atmospheric parameters. Lastly, radiosounding measurements are collected at various sites, including the Concordia station.

Full access
Florence Rabier, Steve Cohn, Philippe Cocquerez, Albert Hertzog, Linnea Avallone, Terry Deshler, Jennifer Haase, Terry Hock, Alexis Doerenbecher, Junhong Wang, Vincent Guidard, Jean-Noël Thépaut, Rolf Langland, Andrew Tangborn, Gianpaolo Balsamo, Eric Brun, David Parsons, Jérôme Bordereau, Carla Cardinali, François Danis, Jean-Pierre Escarnot, Nadia Fourrié, Ron Gelaro, Christophe Genthon, Kayo Ide, Lars Kalnajs, Charlie Martin, Louis-François Meunier, Jean-Marc Nicot, Tuuli Perttula, Nicholas Potts, Patrick Ragazzo, David Richardson, Sergio Sosa-Sesma, and André Vargas
Full access