Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Vincenzo Levizzani x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
Chris Kidd, Ralph Ferraro, and Vincenzo Levizzani

Abstract

No Abstract available.

Full access
Daniel Rosenfeld, Elsa Cattani, Samantha Melani, and Vincenzo Levizzani

The transition from the Advanced Very High Resolution Radiometer (AVHRR)/2 to AVHRR/3 on NOAA polar orbiters was associated with a switching from daylight operations of the 3.7- to 1.6μm wave band, while retaining 3.7 μm for nighttime operations. Investigations of the daylight applicability of the two channels suggest that the 1.6-μm wave band for daylight operations does not prove to be the better choice, at least for cloud applications. The 3.7-μm wave band is much less affected by surface contamination, and measures more faithfully and unambiguously the particle effective radius near cloud tops. The 1.6-μm radiation penetrates deeper into the cloud, supplying an integrated signal throughout the inner portions of the cloud, including surface contribution. Therefore, a synergetic use of the two wave bands can provide an improved retrieval of cloud microstructure and precipitation than from any of the channels alone. However, when one channel must be selected for the AVHRR/3, 3.7 μm performs much better for these applications. Both wave bands identify equally well microphysical features in the anvils of severe storms. For other applications, such as detection of ice and snow over vegetated surfaces and desert dust aerosols, the 1.6-μm wave band does not present clear advantages with respect to 3.7 μm, except that it can be used directly as is, whereas the 3.7-μm wave band has to be corrected for the thermal emission and water vapor absorption. Anyway, the Moderate Resolution Imaging Spectroradiometer (MODIS) can be used instead for the applications to the relatively slowly changing surface properties, while prioritizing the AVHRR for the faster varying atmospheric applications. Finally, the 3.7-mm wave band is more effective in detecting fog, fires, and hot spots. All these factors need to be considered by the operators of AVHRR/3 making a justifiable choice of the channels for the maximum benefit of the user community.

Full access
Paul A. Kucera, Elizabeth E. Ebert, F. Joseph Turk, Vincenzo Levizzani, Dalia Kirschbaum, Francisco J. Tapiador, Alexander Loew, and M. Borsche

Advances to space-based observing systems and data processing techniques have made precipitation datasets quickly and easily available via various data portals and widely used in Earth sciences. The increasingly lengthy time span of space-based precipitation data records has enabled cross-discipline investigations and applications that would otherwise not be possible, revealing discoveries related to hydrological and land processes, climate, atmospheric composition, and ocean freshwater budget and proving a vital element in addressing societal issues. The purpose of this article is to demonstrate how the availability and continuity of precipitation data records from recent and upcoming space missions is transforming the ways that scientific and societal issues are addressed, in ways that would not be otherwise possible.

Full access
Efi Foufoula-Georgiou, Clement Guilloteau, Phu Nguyen, Amir Aghakouchak, Kuo-Lin Hsu, Antonio Busalacchi, F. Joseph Turk, Christa Peters-Lidard, Taikan Oki, Qingyun Duan, Witold Krajewski, Remko Uijlenhoet, Ana Barros, Pierre Kirstetter, William Logan, Terri Hogue, Hoshin Gupta, and Vincenzo Levizzani
Full access