Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: W. G. Large x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
W. G. Large

Abstract

The climatological heat and salt budgets at OWS Papa are examined over the years 1960 to 1981. The average surface fluxes of heat and freshwater are estimated to be 25±15 W m−2 and 4.4±4.3 mg m−2 s−1, respectively. Year to year changes in these fluxes are found to be uncorrelated with changes in ocean heat and salt content above 200-m depth. Different hypotheses of how the surface fluxes are balanced are tested using a one-dimensional model of vertical mixing with prescribed horizontal and vertical heat and salt transport. The surface freshwater flux must be at least 3 mg m−2 s−1, on average, in order to balance model-computed vertical diffusion. Additional surface input is balanced by the vertical advection of salt from below. Other processes are required to balance the heat budget. Assuming that the surface flux estimates are in error and correcting them to give zero net fluxes of both heat and freshwater leads to a systematic erosion of the main pycnocline and deepening of winter mixed layers, such that the surface waters become too cold and too salty. These trends are reduced but not eliminated by including a steady vertical advection due to Ekman pumping and accounting for vertical diffusion in the salt and heat budgets. Balancing the remaining heat by horizontal advection throughout the water column results in a local minimum of too cold water at about 165-m depth. However, acceptable long-term simulations are achieved if the required cold water is transported into the seasonal thermocline and isothermal layer only during the fall and winter months. Observations supporting this scenario are reviewed. Model sensitivity experiments with this balance show which combinations of surface heat and freshwater fluxes produce the observed average amplitude of the annual cycle of sea surface temperature while achieving a realistic salt balance. Coupling the model by using its upper-layer temperature in the surface flux calculations greatly improves the simulators compared to observations and only changes the average heat flux by 1 W m−2. It is concluded that using constant surface flux corrections does not properly account for oceanic transport deficiencies that are not both concentrated in the mixed layer and steady throughout the year.

Full access
W. G. Large and G. Danabasoglu

Abstract

The largest and potentially most important ocean near-surface biases are examined in the Community Climate System Model coupled simulation of present-day conditions. They are attributed to problems in the component models of the ocean or atmosphere, or both. Tropical biases in sea surface salinity (SSS) are associated with precipitation errors, with the most striking being a band of excess rainfall across the South Pacific at about 8°S. Cooler-than-observed equatorial Pacific sea surface temperature (SST) is necessary to control a potentially catastrophic positive feedback, involving precipitation along the equator. The strength of the wind-driven gyres and interbasin exchange is in reasonable agreement with observations, despite the generally too strong near-surface winds. However, the winds drive far too much transport through Drake Passage [>190 Sv (1 Sv ≡ 106 m3 s−1)], but with little effect on SST and SSS. Problems with the width, separation, and location of western boundary currents and their extensions create large correlated SST and SSS biases in midlatitudes. Ocean model deficiencies are suspected because similar signals are seen in uncoupled ocean solutions, but there is no evidence of serious remote impacts. The seasonal cycles of SST and winds in the equatorial Pacific are not well represented, and numerical experiments suggest that these problems are initiated by the coupling of either or both wind components. The largest mean SST biases develop along the eastern boundaries of subtropical gyres, and the overall coupled model response is found to be linear. In the South Atlantic, surface currents advect these biases across much of the tropical basin. Significant precipitation responses are found both in the northwest Indian Ocean, and locally where the net result is the loss of an identifiable Atlantic intertropical convergence zone, which can be regained by controlling the coastal temperatures and salinities. Biases off South America and Baja California are shown to significantly degrade precipitation across the Pacific, subsurface ocean properties on both sides of the equator, and the seasonal cycle of equatorial SST in the eastern Pacific. These signals extend beyond the reach of surface currents, so connections via the atmosphere and subsurface ocean are implicated. Other experimental results indicate that the local atmospheric forcing is only part of the problem along eastern boundaries, with the representation of ocean upwelling another likely contributor.

Full access
W. G. Large and S. G. Yeager

Abstract

Global satellite observations show the sea surface temperature (SST) increasing since the 1970s in all ocean basins, while the net air–sea heat flux Q decreases. Over the period 1984–2006 the global changes are 0.28°C in SST and −9.1 W m−2 in Q, giving an effective air–sea coupling coefficient of −32 W m−2 °C−1. The global response in Q expected from SST alone is determined to be −12.9 W m−2, and the global distribution of the associated coupling coefficient is shown. Typically, about one-half (6.8 W m−2) of this SST effect on heat flux is compensated by changes in the overlying near-surface atmosphere. Slab Ocean Models (SOMs) assume that ocean heating processes do not change from year to year so that a constant annual heat flux would maintain a linear trend in annual SST. However, the necessary 6.1 W m−2 increase is not found in the downwelling longwave and shortwave fluxes, which combined show a −3 W m−2 decrease. The SOM assumptions are revisited to determine the most likely source of the inconsistency with observations of (−12.9 + 6.8 − 3) = −9.1 W m−2. The indirect inference is that diminished ocean cooling due to vertical ocean processes played an important role in sustaining the observed positive trend in global SST from 1984 through 2006, despite the decrease in global surface heat flux. A similar situation is found in the individual basins, though magnitudes differ. A conclusion is that natural variability, rather than long-term climate change, dominates the SST and heat flux changes over this 23-yr period. On shorter time scales the relationship between SST and heat flux exhibits a variety of behaviors.

Full access
John W. Weatherly, Bruce P. Briegleb, William G. Large, and James A. Maslanik

Abstract

The Climate System Model (CSM) consists of atmosphere, ocean, land, and sea-ice components linked by a flux coupler, which computes fluxes of energy and momentum between components. The sea-ice component consists of a thermodynamic formulation for ice, snow, and leads within the ice pack, and ice dynamics using the cavitating-fluid ice rheology, which allows for the compressive strength of ice but ignores shear viscosity.

The results of a 300-yr climate simulation are presented, with the focus on sea ice and the atmospheric forcing over sea ice in the polar regions. The atmospheric model results are compared to analyses from the European Centre for Medium-Range Weather Forecasts and other observational sources. The sea-ice concentrations and velocities are compared to satellite observational data.

The atmospheric sea level pressure (SLP) in CSM exhibits a high in the central Arctic displaced poleward from the observed Beaufort high. The Southern Hemisphere SLP over sea ice is generally 5 mb lower than observed. Air temperatures over sea ice in both hemispheres exhibit cold biases of 2–4 K. The precipitation-minus-evaporation fields in both hemispheres are greatly improved over those from earlier versions of the atmospheric GCM.

The simulated ice-covered area is close to observations in the Southern Hemisphere but too large in the Northern Hemisphere. The ice concentration fields show that the ice cover is too extensive in the North Pacific and subarctic North Atlantic Oceans. The interannual variability of the ice area is similar to observations in both hemispheres. The ice thickness pattern in the Antarctic is realistic but generally too thin away from the continent. The maximum thickness in the Arctic occurs against the Bering Strait, not against the Canadian Archipelago as observed. The ice velocities are stronger than observed in both hemispheres, with a consistently greater turning angle (to the left) in the Southern Hemisphere. They produce a northward ice transport in the Southern Hemisphere that is 3–4 times the satellite-derived value. Sensitivity tests with the sea-ice component show that both the pattern of wind forcing in CSM and the air-ice drag parameter used contribute to the biases in thickness, drift speeds, and transport. Plans for further development of the ice model to incorporate a viscous-plastic ice rheology are presented.

In spite of the biases of the sea-ice simulation, the 300-yr climate simulation exhibits only a small degree of drift in the surface climate without the use of flux adjustment. This suggests a robust stability in the simulated climate in the presence of significant variability.

Full access