Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Wei Chen x
  • Years of the Maritime Continent x
  • All content x
Clear All Modify Search
Wei-Ting Chen, Shih-Pei Hsu, Yuan-Huai Tsai, and Chung-Hsiung Sui


We studied the scale interactions of the convectively coupled Kelvin waves (KWs) over the South China Sea (SCS) and Maritime Continent (MC) during December 2016. Three KWs were observed near the equator in this month while the Madden–Julian oscillation (MJO) was inactive. The impacts of these KWs on the rainfall variability of various time scales are diagnosed, including synoptic disturbances, diurnal cycle (DC), and the onset of the Australian monsoon. Four interaction events between the KWs and the westward-propagating waves over the off-equatorial regions were examined; two events led to KW enhancements and the other two contributed to the formation of a tropical depression/tropical cyclone. Over the KW convectively active region of the MC, the DC of precipitation was enhanced in major islands and neighboring oceans. Over the land, the DC hot spots were modulated depending on the background winds and the terrain effects. Over the ocean, the “coastal regime” of the DC appeared at specific coastal areas. Last, the Australian summer monsoon onset occurred with the passage of a KW, which provided favorable conditions of low-level westerlies and initial convection over southern MC and the Arafura Sea. This effect may be helped by the warm sea surface temperature anomalies associated with the La Niña condition of this month. The current results showcase that KWs and their associated scale interactions can provide useful references for weather monitoring and forecast of this region when the MJO is absent.

Full access
Chu-Chun Chen, Min-Hui Lo, Eun-Soon Im, Jin-Yi Yu, Yu-Chiao Liang, Wei-Ting Chen, Iping Tang, Chia-Wei Lan, Ren-Jie Wu, and Rong-You Chien


Tropical deforestation can result in substantial changes in local surface energy and water budgets, and thus in atmospheric stability. These effects may in turn yield changes in precipitation. The Maritime Continent (MC) has undergone severe deforestation during the past few decades but it has received less attention than the deforestation in the Amazon and Congo rain forests. In this study, numerical deforestation experiments are conducted with global (i.e., Community Earth System Model) and regional climate models (i.e., Regional Climate Model version 4.6) to investigate precipitation responses to MC deforestation. The results show that the deforestation in the MC region leads to increases in both surface temperature and local precipitation. Atmospheric moisture budget analysis reveals that the enhanced precipitation is associated more with the dynamic component than with the thermodynamic component of the vertical moisture advection term. Further analyses on the vertical profile of moist static energy indicate that the atmospheric instability over the deforested areas is increased as a result of anomalous moistening at approximately 800–850 hPa and anomalous warming extending from the surface to 750 hPa. This instability favors ascending air motions, which enhance low-level moisture convergence. Moreover, the vertical motion increases associated with the MC deforestation are comparable to those generated by La Niña events. These findings offer not only mechanisms to explain the local climatic responses to MC deforestation but also insights into the possible reasons for disagreements among climate models in simulating the precipitation responses.

Open access