Search Results

You are looking at 1 - 10 of 10 items for :

  • Author or Editor: Wei Chen x
  • Journal of the Atmospheric Sciences x
  • All content x
Clear All Modify Search
Guoxing Chen and Wei-Chyung Wang

Abstract

Recently, Chen et al. used a combination of observations and WRF simulations to illustrate that the anthropogenic aerosol–cloud microphysics–radiation interactions over the southeast Pacific can potentially reduce the excessive shortwave radiation reaching the sea surface, a common bias identified in CMIP5 models. Here, with the aid of a mixed-layer ocean, the authors further study the implications of the shortwave radiation reduction to the underlying air–sea coupling, focusing on the SST sensitivity to the changes. Results show that responses of the air–sea coupling include two negative feedbacks (a large decrease in the latent heat flux and a small decrease in the sensible heat flux, both associated with the surface cooling) and a positive feedback (an increase in the cloud cover, caused by the increase in the relative humidity within the boundary layer, especially during the daytime). The 0.1°C (W m−2)−1 SST sensitivity is about half that documented in CMIP5 models. In addition, an effective daytime cloud fraction weighted with the solar diurnal cycle is proposed to facilitate diagnosing the intensity of cloud–radiation interactions in general circulation models.

Full access
M. Roja Raman and Wei-Nai Chen

Abstract

This study presents monthly trends in the cold-point tropopause (CPT), calculated using three decades of radiosonde data from 1981 to 2010 over Taipei, Taiwan (25°01′N, 121°27′E). Multivariate regression analysis has been used to suppress the effect of natural variations, such as quasi-biennial oscillation (QBO), ENSO, solar cycle, and volcanic eruptions. From the continuous time series, statistically insignificant heating and a decrease in the height of CPT are observed. However, the trends estimated using individual monthly time series revealed new features with statistically significant increasing trends in CPT temperature at a rate of approximately 0.03°C yr−1 and statistically significant decreasing trends in CPT height at a rate of approximately 4.7 m yr−1 during summer months. An enhanced heating rate in the upper troposphere along with a suppressed cooling rate in the lower stratosphere observed over Taipei might have caused the tropopause heating trend during summer. The possible relationship between tropopause trends and lower-stratospheric ozone is also examined. The seasonal and spatial variations in trends estimated using NCEP–Climate Forecast System Reanalysis (CFSR) data reveal the spatial heterogeneity in CPT temperature trends. Initial inspection of monthly trends in tropopause characteristics suggests that the estimation of tropopause trends using the continuous time series may not exactly represent the long-term variability of individual months or seasons.

Full access
Chen Wei, Oliver Bühler, and Esteban G. Tabak

Abstract

The authors present an idealized theoretical and numerical study of tsunami-induced internal waves in the atmosphere. These are gravity waves modified by acoustic effects that can propagate rapidly from the ocean surface up to the ionosphere, where they are well known to leave a detectable fingerprint in airglow patterns and other remote sensing observables. Accurate modeling of the wave propagation is a prerequisite for being able to detect and decode this transient observational fingerprint by remote sensing methods. The authors study this problem by formulating the initial-value problem for linear waves forced by an idealized tsunami at the lower boundary and then employing a semianalytic Fourier–Laplace method to solve it. This approach allows them to compute the detailed time evolution of the waves while ensuring that the correct radiation condition in the vertical is satisfied at all times, a nontrivial matter for these transient waves.

The authors also compare the predictions of an anelastic model with that of a fully compressible model in order to discern the importance of acoustic effects. The findings demonstrate that back-reflection at the tropopause is a significant factor for the structure of these waves and that the earliest observable signal in the ionosphere is, in fact, a fast acoustic precursor wave generated by the nearly impulsive formation of the tsunami itself.

Full access
Guoxing Chen, Wei-Chyung Wang, and Jen-Ping Chen

Abstract

Atmosphere–ocean general circulation models tend to underestimate the solar radiative forcing by stratocumulus over the southeast Pacific, contributing to a warm sea surface temperature (SST) bias. The underestimation may be caused by biases in either macro- or micro- (or both) physical properties of clouds. This study used the WRF Model (incorporated with a physics-based two-moment cloud microphysical scheme) together with the 2008 Variability of the American Monsoon Systems Ocean–Cloud–Atmosphere–Land Study (VOCALS) field observations to investigate the effects of anthropogenic aerosols on the stratocumulus properties and their subsequent effects on the surface radiation balance. The effects were studied by comparing two cases: a control case with the anthropogenic aerosols and a sensitivity case without the anthropogenic aerosols. Results show that the control case produced cloud properties comparable with the measurements by aircraft and that aerosol–cloud microphysical interactions play an important role in regulating solar cloud radiative forcing. As expected, the anthropogenic aerosols increase the cloud droplet number and decrease the cloud droplet size, resulting in an enhancement of solar cloud radiative forcing and a reduction in solar radiation reaching the sea surface, up to a maximum of about 30 W m−2 near the coast. Results also show that aerosol–cloud microphysics–radiation interactions are sensitive to cloud fraction, thus highlighting the role of cloud diurnal variation in studying the cloud–radiation interactions. Analysis of the high-resolution (3 km) model simulations reveals that there exists an inherent scale dependence of aerosol–cloud–radiation interactions, with coarser horizontal resolution yielding a weaker variability.

Full access
Shou-Jun Chen, Ying-Hwa Kuo, Wei Ming, and Hong Ying

Abstract

Severe dust storms frequently occur over northwestern China during spring. They are often associated with strong fronts. In this paper, numerical simulations are performed to examine the effect of dust radiative heating on surface frontogenesis.

The absorption and multiple scattering of the dust are included in an atmospheric radiation scheme. A two-dimensional primitive equation model with 20 levels in the vertical is used for idealized simulations. After a 12-h integration a strong narrow front zone is created below 650 mb. The horizontal potential temperature gradient reaches 6 K (100 km)−1, which is three times as large as that in the initial data. A direct vertical transverse circulation is established along the frontal zone. which is qualitatively similar to the observations.

The results show positive interaction between low-level frontogenesis and dust radiative heating. The adiabatic frontogenesis forcing is enhanced by the feedback of the dust radiative heating. These results suggest that the dust heating can significantly affect mesoscale weather systems in arid and desert regions.

Full access
Zhe Li, Huiwen Xue, Jen-Ping Chen, and Wei-Chyung Wang

Abstract

This study investigates the effects of meteorological conditions and aerosols on marine stratocumulus in the southeastern Pacific using the Weather Research and Forecasting (WRF) Model. Two regimes with different temperature and moisture conditions in the finest model domain are investigated. The western regime is around 87°–79°W, while the eastern regime is around 79°–71°W. In both regimes, cloud fraction, liquid water path (LWP), cloud thickness, and precipitation show significant diurnal cycles. Cloud fraction can be 0.83 during the night and down to 0.29 during the day in the western regime. The diurnal cycles in the eastern regime have smaller amplitudes but are still very strong. Stratocumulus properties also differ in the two regimes. Compared to the western regime, the eastern regime has lower temperature, higher relative humidity, and a more coupled boundary layer, leading to higher cloud fraction (by 0.11) and lower cloud-base height. The eastern regime also has lower inversion height that causes lower cloud-top height and thinner clouds and, hence, lower LWP and less precipitation.

Cloud microphysical properties are very sensitive to aerosols in both regimes. Increasing aerosols greatly increase cloud number concentration, decrease cloud effective radius, and suppress precipitation. Cloud macrophysical properties (cloud fraction, LWP) are not sensitive to aerosols in either regime, most notably in the eastern regime where precipitation amount is less. The changes in cloud fraction and LWP caused by changes in aerosol concentrations are smaller than the changes in the diurnal cycle and the spatial variability between the two regimes.

Full access
Liqi Chen, Wei Li, Jianqiong Zhan, Jianjun Wang, Yuanhui Zhang, and Xulin Yang

Abstract

To investigate the concentrations, sources, and temporal variations of atmospheric black carbon (BC) in the summer Arctic, routine ground-level observations of BC by optical absorption were made in the summer from 2005 to 2008 at the Chinese Arctic “Yellow River” Station (78°55′N, 11°56′E) at Ny-Ålesund on the island of Spitsbergen in the Svalbard Archipelago. Methods of the ensemble empirical-mode decomposition analysis and back-trajectory analysis were employed to assess temporal variation embedded in the BC datasets and airmass transport patterns. The 10th-percentile and median values of BC concentrations were 7.2 and 14.6 ng m−3, respectively, and hourly average BC concentrations ranged from 2.5 to 54.6 ng m−3. A gradual increase was found by 4 ng m−3 a−1. This increase was not seen in the Zeppelin Station and it seemed to contrast with the prevalent conception of generally decreasing BC concentration since 1989 in the Arctic. Factors responsible for this increase such as changes in emissions and atmospheric transport were taken into consideration. The result indicated that BC from local emissions was mostly responsible for the observed increase from 2005 to 2008. BC temporal variation in the summer was controlled by the atmospheric circulation, which presented a significant 6–14-day variation and coherent with 1–3- and 2–5-day and longer cycle variation. Although the atmospheric circulation changes from 2005 to 2008, there was not a marked trend in long-range transportation of BC. This study suggested that local emissions might have significant implication for the regional radiative energy balance at Ny-Ålesund.

Full access
Shuyi S. Chen, Wei Zhao, Mark A. Donelan, and Hendrik L. Tolman

Abstract

The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The Coupled Boundary Layer Air–Sea Transfer (CBLAST)-Hurricane program is aimed at developing improved coupling parameterizations (using the observations collected during the CBLAST-Hurricane field program) for the next-generation hurricane research prediction models. Hurricane-induced surface waves that determine the surface stress are highly asymmetric, which can affect storm structure and intensity significantly. Much of the stress is supported by waves in the wavelength range of 0.1–10 m, which is the unresolved “spectral tail” in present wave models. A directional wind–wave coupling method is developed to include effects of directionality of the wind and waves in hurricanes. The surface stress vector is calculated using the two-dimensional wave spectra from a wave model with an added short-wave spectral tail. The wind and waves are coupled in a vector form rather than through the traditional roughness scalar. This new wind–wave coupling parameterization has been implemented in a fully coupled atmosphere–wave–ocean model with 1.67-km grid resolution in the atmospheric model, which can resolve finescale features in the extreme high-wind region of the hurricane eyewall. It has been tested in a number of storms including Hurricane Frances (2004), which is one of the best-observed storms during the CBLAST-Hurricane 2004 field program. This paper describes the new wind–wave coupling parameterization and examines the characteristics of the coupled model simulations of Hurricane Frances (2004). Observations of surface waves and winds are used to evaluate the coupled model results.

Full access
Zhenyi Lin, Nan Chen, Yongzhen Fan, Wei Li, Knut Stamnes, and Snorre Stamnes

Abstract

The treatment of strongly anisotropic scattering phase functions is still a challenge for accurate radiance computations. The new delta-M+ method resolves this problem by introducing a reliable, fast, accurate, and easy-to-use Legendre expansion of the scattering phase function with modified moments. Delta-M+ is an upgrade of the widely used delta-M method that truncates the forward scattering peak with a Dirac delta function, where the “+” symbol indicates that it essentially matches moments beyond the first M terms. Compared with the original delta-M method, delta-M+ has the same computational efficiency, but for radiance computations, the accuracy and stability have been increased dramatically.

Full access
Yi-Hung Kuo, J. David Neelin, Chih-Chieh Chen, Wei-Ting Chen, Leo J. Donner, Andrew Gettelman, Xianan Jiang, Kuan-Ting Kuo, Eric Maloney, Carlos R. Mechoso, Yi Ming, Kathleen A. Schiro, Charles J. Seman, Chien-Ming Wu, and Ming Zhao

Abstract

To assess deep convective parameterizations in a variety of GCMs and examine the fast-time-scale convective transition, a set of statistics characterizing the pickup of precipitation as a function of column water vapor (CWV), PDFs and joint PDFs of CWV and precipitation, and the dependence of the moisture–precipitation relation on tropospheric temperature is evaluated using the hourly output of two versions of the GFDL Atmospheric Model, version 4 (AM4), NCAR CAM5 and superparameterized CAM (SPCAM). The 6-hourly output from the MJO Task Force (MJOTF)/GEWEX Atmospheric System Study (GASS) project is also analyzed. Contrasting statistics produced from individual models that primarily differ in representations of moist convection suggest that convective transition statistics can substantially distinguish differences in convective representation and its interaction with the large-scale flow, while models that differ only in spatial–temporal resolution, microphysics, or ocean–atmosphere coupling result in similar statistics. Most of the models simulate some version of the observed sharp increase in precipitation as CWV exceeds a critical value, as well as that convective onset occurs at higher CWV but at lower column RH as temperature increases. While some models quantitatively capture these observed features and associated probability distributions, considerable intermodel spread and departures from observations in various aspects of the precipitation–CWV relationship are noted. For instance, in many of the models, the transition from the low-CWV, nonprecipitating regime to the moist regime for CWV around and above critical is less abrupt than in observations. Additionally, some models overproduce drizzle at low CWV, and some require CWV higher than observed for strong precipitation. For many of the models, it is particularly challenging to simulate the probability distributions of CWV at high temperature.

Open access