Search Results

You are looking at 1 - 10 of 13 items for :

  • Author or Editor: Wen Chen x
  • Monthly Weather Review x
  • All content x
Clear All Modify Search
Shu-hua Chen and Wen-yih Sun

Abstract

A fully compressible, three-dimensional, nonhydrostatic model is developed using a semi-implicit scheme to avoid an extremely small time step. As a result of applying the implicit scheme to high-frequency waves, an elliptic partial differential equation (EPDE) has been introduced. A multigrid solver is applied to solve the EPDEs, which include cross-derivative terms due to terrain-following coordinate transformation.

Several experiments have been performed to evaluate the model as well as the performance of the scheme with respect to tolerance number, relaxation choice, sweeps of prerelaxation and postrelaxation, and a flexible hybrid coordinate (FHC).

An FHC with two functions (base and deviation functions) is introduced. The basic function provides constant vertical grid spacing required in the multigrid solver, while the deviation function helps to adjust the vertical resolution.

Full access
Wen-Dar Chen and Ronald B. Smith

Abstract

A method of computing low-level trajectories from observed sea level pressure is shown to be capable of distinguishing cases of blocked and non-blocked flow around the Alps. A flow-splitting parameter (S), derived from the trajectories, is found to be a reasonable criterion for distinguishing blocked from nonblocked cases, with a value of S = 1.5 serving as a useful threshold for classification. In considering eight cases of postfrontal cold flow against the Alps, only a few can be clearly identified as blocking or noblocking, and even these identifications may not pertain to all levels and all segments of the Alpine chain.

The trajectory-based classification scheme compares well with sounding and flight level data from the NOAA P-3 research aircraft. The degree of blocking is shown to be related to the upstream Froude number and the strength of the upstream pressure nose.

A remarkable result is that the observed surface wind patterns appear blocked in all cases considered here. We refer to this as “boundary layer blocking”

Unsteady effects tend to stretch out streaklines east to west along the northern foothhills of the Alps.

Full access
Ching-Sen Chen, Wen-Sheen Chen, and Zensing Deng

Abstract

The field program TAMEX (Taiwan Area Mesoscale Experiment) was held during May and June 1987. One of its objectives was to study the cited of terrain on precipitation systems. On 7 June 1987 a band of radar echo, orientated from north to south, developed during the afternoon along the western slope and mountainous area of Taiwan island. Before this system moved eastward toward the Pacific Ocean in the late afternoon, it dumped more than 100 mm of precipitation at a few stations in only a few hours. The analysis of radar data from CAA radar revealed that the precipitation occurred over western-sloped terrain and a mountain plateau in the early afternoon. The system was wider than 60 km in the east-west direction, and the echo top was higher than 10 km. The maximum reflectivity was over 50 dBZ along the steep slope and near the mountain peak. The precipitation system over the mountain area extended eastward with the passage of time; meanwhile, new echoes continually formed along the western-sloped area and moved eastward. They intensified as they moved toward the mountain peak merging with the precipitation system. Through this mechanism the precipitation system could maintain itself for several hours and produce a large amount of rainfall.

A two-dimensional numerical cloud model with a terrain-following coordinate system, similar to the one developed by Durran and Klemp, was used to investigate the topographic effect on the precipitation system. A smoother terrain feature was used for the lower boundary, with a 30-km-wide mountain plateau (of less than 1 km in height) and sloped terrain on the western and eastern sides. Surface heating and boundary-layer moisture supply were parameterized in the model. Simulation results indicated that during the early simulation a cell formed near the foothills of the west slope and moved eastward. As it climbed up the sloping terrain it intensified. Its speed decreased and its high intensity was maintained over the slope and the mountain plateau. At the same time, a new cell formed west of the older cell and moved eastward. Finally this new cell merged into the western side of the older one near the mountain peak to form one precipitation system and moved eastward slowly. Thus, the intensity of the merged system was enhanced over the mountain plateau. While this system maintained its high intensity and moved eastward, new cells continually formed along the western slope and moved eastward to merge into the western side of the precipitation system over the mountainous area. The intensity of the precipitation system was enhanced for a few hours over the mountain itself and became a long-lasting system. Toward the end of the simulation, this long-lasting system had moved near the eastern slope and had still maintained its intensity. At the same time, the low-level temperature decreased over the mountainous area as a result of precipitation evaporation. When new cells, forming over the western slope, moved toward the mountain plateau, they entered their decaying stage 45 min after their occurrence. They did not merge into the existing system on the eastern part of the mountain; therefore, the precipitation over the mountain plateau became weaker.

Several sensitivity tests have been made to study the effect of varying the magnitude of surface heating, the boundary-layer moisture supply, the height of the terrain, and the temperature, moisture, and wind profiles on the simulation result. The result indicated that low-level and midlevel moisture were important for the formation of new cells over the western slope and a long-lasting system over the mountain area, respectively. The initial wind speed of 7 m s−1 below 4 km and calm wind above 4 km was used in the model; then a long-lasting precipitation system over the mountainous area appeared. If the wind speed was reduced to 3.5 m s−1, only new cells formed over the western slope. If the maximum height of the terrain was decreased from 1 to 0.5 km, then only new cells formed over the slope area. Hence, sensitivity tests indicated that the combination of the adequate thermodynamic structure, the westerly wind pattern, and the correct size of the mountain could help form both the new cells over the sloped terrain and a long-lasting system over mountain areas as in northern Taiwan on 7 June 1987 during TAMEX. The surface heating effect played the role of creating the upslope wind and augmentation of this precipitation system.

Full access
Peng Hu, Wen Chen, Shangfeng Chen, Yuyun Liu, and Ruping Huang

Abstract

The El Niño–Southern Oscillation (ENSO) is regarded as one of the most important factors for onset of the South China Sea summer monsoon (SCSSM). Previous studies generally indicated that an El Niño event tends to result in a late onset of the SCSSM monsoon. However, this relationship has not been true in recent years, particularly when an extremely early SCSSM onset (1 May 2019) occurred following the 2018/19 El Niño event in the preceding winter. The processes of the second earliest SCSSM onset in the past 41 years were investigated using NCEP–DOE reanalysis, OLR data, and ERSST. A negative sea surface temperature and associated anticyclonic anomalies were absent over the western North Pacific in the late spring of 2019 following an El Niño event in the preceding winter. Thus, the mean circulation in the late spring of 2019 does not prevent SCSSM onset, which is in sharp contrast to the composited spring of the El Niño decaying years. The convective active and westerly phases of a 30–60-day oscillation originating from the Indian Ocean provided a favorable background for the SCSSM onset in 2019. In addition, the monsoon onset vortex over the Bay of Bengal and the cold front associated with a midlatitude trough over East Asia also played important roles in triggering the early onset of the SCSSM in 2019. No tropical cyclone appeared over the western North Pacific during April and May, and the enhancement of quasi-biweekly oscillation mainly occurs after the SCSSM onset; thus, these two factors contribute little to the SCSSM onset in 2019.

Restricted access
Wenxin Zeng, Guixing Chen, Yu Du, and Zhiping Wen

Abstract

A succession of MCSs developed during the last week of October 2016 and produced extreme heavy rainfall in central China. The event underwent an evident shift from a mei-yu-like warm scenario to an autumn cold scenario. Diurnal cycles of rainfall and low-level winds may be modulated by the shifting of large-scale atmospheric conditions. We conducted observational analyses and numerical experiments to examine how large-scale circulations influenced rainfall systems through diurnally varying processes. The results show that, in the first half (warm) period of the event, intense rainfall mostly occurred in eastern-central China with an early morning peak. It was closely related to a nocturnal southwesterly low-level jet (NLLJ) on the flank of the western Pacific subtropical high. The NLLJ formed near midnight in southern China where ageostrophic wind rotated clockwise due to Blackadar’s inertial oscillation. The NLLJ extended downstream to central China during the predawn hours due to the horizontal advection of momentum. Both the formation and extension of the NLLJ were supported by an enhanced subtropical high that provided relatively warm conditions with surface heating for boundary layer inertial oscillation and strong background southwesterly winds for momentum transport. The NLLJ induced MCSs at its northern terminus where the low-level ascent, moisture flux convergence, and convective instability were enhanced during the predawn hours. In the second half period with an intrusion of cold air, the diurnal amplitude of low-level winds became small under relatively cold and cloudy conditions. Moderate rainfall tended to occur in western-central China with a peak after midnight, most likely due to frontogenetic processes, upslope lifting, and nighttime cloud-top cooling.

Free access
Guixing Chen, Weiming Sha, Toshiki Iwasaki, and Zhiping Wen

Abstract

Moist convection occurred repeatedly in the midnight-to-morning hours of 11–16 June 1998 and yielded excessive rainfall in a narrow latitudinal corridor over East Asia, causing severe flood. Numerical experiments and composite analyses of a 5-day period are performed to examine the mechanisms governing nocturnal convection. Both simulations and observations show that a train of MCSs concurrently developed along a quasi-stationary mei-yu front and coincided with the impact of a monsoon surge on a frontogenetic zone at night. This process was regulated primarily by a nocturnal low-level jet (NLLJ) in the southwesterly monsoon that formed over southern China and extended to central China. In particular, the NLLJ acted as a mechanism of moisture transport over the plains. At its northern terminus, the NLLJ led to a zonal band of elevated conditionally unstable air where strong low-level ascent overcame small convective inhibition, triggering new convection in three preferred plains. An analysis of convective instability shows that the low-tropospheric intrusion of moist monsoon air generated CAPE of ~1000 J kg−1 prior to convection initiation, whereas free-atmospheric forcing was much weaker. The NLLJ-related horizontal advection accounted for most of the instability precondition at 100–175 J kg−1 h−1. At the convective stage, instability generation by the upward transport of moisture increased to ~100 J kg−1 h−1, suggesting that ascending inflow caused feedback in convection growth. The convection dissipated in late morning with decaying NLLJ and moisture at elevated layers. It is concluded that the diurnally varying summer monsoon acted as an effective discharge of available moist energy from southern to central China, generating the morning-peak heavy rainfall corridor.

Full access
Jun Li, Yi-Leng Chen, and Wen-Chau Lee

Abstract

A heavy rainfall event during the Taiwan Area Mesoscale Experiment intensive observing period 13 has been studied using upper-air, surface mesonet, and dual-Doppler radar data. The heavy rainfall (≥231 mm day−1) occurred over northwestern Taiwan with the maximum rainfall along the northwestern coast and was caused by a long-lived, convective rainband in the prefrontal atmosphere. It occurred in an upper-level divergence region and along the axis of the maximum equivalent potential temperature at the 850-hPa level.

As a Mei-Yu front advanced southeastward, the postfrontal cold air in the lowest levels was retarded by the hilly terrain along the southeastern China coast. As a result, a low-level wind-shift line associated with a pressure trough at the 850-hPa level moved over the Taiwan Strait before the arrival of the surface front. The westerly flow behind the trough interacted with a barrier jet along the northwestern coast of Taiwan. The barrier jet is caused by the interaction between the prefrontal southwest monsoon flow and the island obstacle. A low-level convergence zone (∼3 km deep) was observed along the wind-shift line between the westerly flow coming off the southeastern China coast and the barrier jet. A long-lived rainband developed within the low-level convergence zone and moved southeastward toward the northwestern Taiwan coast with the wind-shift line.

There were several long-lived (>2 h) reflectivity maxima embedded in the rainband. They often had several individual cells with a much shorter lifetime. The reflectivity maxima formed on the southwestern tip of the rainband and along the low-level wind-shift line. They intensified during their movement from the southwest to the northeast along the rainband. The continuous generation of the reflectivity maxima along the wind-shift line and the intensification of them over the low-level convergence zone maintained the long lifetime of the rainband and produced persistent heavy rainfall along the northwestern coast as these reflectivity maxima moved toward the coast. During the early stage of their lifetime, the reflectivity maxima were observed along the wind-shift line with upward motion in the lower troposphere. As they moved toward the northeastern part of the rainband and matured, the reflectivity maxima were observed southeast of the convergence zone with sinking motion in the lower troposphere. The upward motion was rooted along the wind-shift line and tilted southeastward with height. The reflectivity maxima dissipated as they moved inland. During the early stage of the rainband, the reflectivity maxima on the northeastern part of the rainband also merged with the convective line associated with the land-breeze front offshore of the northwestern coast.

The Mei-Yu front was shallow (<1 km) and moved slowly southward along the western coast. Convection associated with the front was weak with echo tops (∼10 dBZ) below 6 km.

Full access
Xu Zhang, Jian-Wen Bao, Baode Chen, and Evelyn D. Grell

Abstract

A new three-dimensional (3D) turbulent kinetic energy (TKE) subgrid mixing scheme is developed using the Advanced Research version of the Weather Research and Forecasting (WRF) Model (WRF-ARW) to address the gray-zone problem in the parameterization of subgrid turbulent mixing. The new scheme combines the horizontal and vertical subgrid turbulent mixing into a single energetically consistent framework, in contrast to the conventionally separate treatment of the vertical and horizontal mixing. The new scheme is self-adaptive to the grid-size change between the large-eddy simulation (LES) and mesoscale limits. A series of dry convective boundary layer (CBL) idealized simulations are carried out to compare the performance of the new scheme and the conventional treatment of subgrid mixing to the WRF-ARW LES dataset. The importance of including the nonlocal component in the vertical buoyancy specification in the newly developed general TKE-based scheme is illustrated in the comparison. The improvements of the new scheme with the conventional treatment of subgrid mixing across the gray-zone model resolutions are demonstrated through the partitioning of the total vertical flux profiles. Results from real-case simulations show the feasibility of using the new scheme in the WRF Model in lieu of the conventional treatment of subgrid mixing.

Full access
Wen Zhou, Johnny C. L. Chan, Wen Chen, Jian Ling, Joaquim G. Pinto, and Yaping Shao

Abstract

In January 2008, central and southern China experienced persistent low temperatures, freezing rain, and snow. The large-scale conditions associated with the occurrence and development of these snowstorms are examined in order to identify the key synoptic controls leading to this event. Three main factors are identified: 1) the persistent blocking high over Siberia, which remained quasi-stationary around 65°E for 3 weeks, led to advection of dry and cold Siberian air down to central and southern China; 2) a strong persistent southwesterly flow associated with the western Pacific subtropical high led to enhanced moisture advection from the Bay of Bengal into central and southern China; and 3) the deep inversion layer in the lower troposphere associated with the extended snow cover over most of central and southern China. The combination of these three factors is likely responsible for the unusual severity of the event, and hence a long return period.

Full access
Yu-Chieng Liou, Tai-Chi Chen Wang, Wen-Chau Lee, and Ya-Ju Chang

Abstract

The ground-based velocity track display (GBVTD) technique is extended to two Doppler radars to retrieve the structure of a tropical cyclone’s (TC’s) circulation. With this extension, it is found that the asymmetric part of the TC radial wind component can be derived up to its angular wavenumber-1 structure, and the accuracy of the retrieved TC tangential wind component can be further improved. Although two radar systems are used, a comparison with the traditional dual-Doppler synthesis indicates that this extended GBVTD (EGBVTD) approach is able to estimate more of the TC circulation when there are missing data. Previous research along with this study reveals that the existence of strong asymmetric radial flows can degrade the quality of the GBVTD-derived wind fields. When a TC is observed by one radar, it is suggested that the GBVTD method be applied to TCs over a flat surface (e.g., the ocean) where the assumption of relatively smaller asymmetric radial winds than asymmetric tangential winds is more likely to be true. However, when a TC is observed by two radar systems, especially when the topographic effects are expected to be significant, the EGBVTD rather than the traditional dual-Doppler synthesis should be used.

The feasibility of the proposed EGBVTD method is demonstrated by applying it to an idealized TC circulation model as well as a real case study. Finally, the possibility of combining EGBVTD with other observational instruments, such as dropsonde or wind profilers, to recover the asymmetric TC radial flow structures with even higher wavenumbers is discussed.

Full access