Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Wen Zhou x
  • Journal of the Atmospheric Sciences x
  • All content x
Clear All Modify Search
Jie Song, Wen Zhou, Xin Wang, and Chongyin Li


This study investigates linkages between the zonal asymmetry of the annular mode (AM) zonal pattern and the subtropical jet (STJ) over its downstream regions of the storm track by using an idealized model. Observational analyses show that the AM zonal patterns are more zonally asymmetric during days when the STJ downstream of the storm track is unusually strong, and vice versa. In the idealized model, the STJ downstream of the storm track is varied by introducing an additional zonally localized tropical heating. The model’s AM variability exhibits a nearly zonally uniform structure when there is no or only weak tropical heating. However, the signatures of the AM are locally strengthened in the heating sector; thus, the AM zonal pattern is zonally asymmetric when the tropical heating is large enough to create a strong STJ. The model results also show that the percentage of the variance explained by the AM, the persistence of the AM index, and the intensity of eddy feedback are also increased when the tropical heating becomes stronger. It is argued herein that the zonal asymmetry of the AM pattern is caused by the zonal asymmetry of the anomalous synoptic eddy forcing projecting on the AM, which is primarily due to the zonal asymmetry of the variations of the storm track between the nonheating and heating sectors.

Full access
Tao Feng, Xiu-Qun Yang, Wen Zhou, Ronghui Huang, Liang Wu, and Dejian Yang


Tropical depression (TD)-type waves are the dominant mode of synoptic-scale fluctuations over the western North Pacific. By applying spatiotemporal filters to the observed OLR data and the NCEP–DOE AMIP-II reanalysis data for 1979–2013, this study reveals the characteristics and energetics of convectively coupled TD-type waves under the effects of different circulation patterns in association with vertical wind shear. Results exhibit that different ambient sheared flows significantly affect the vertical structure of westward-propagating TD-type waves, with a lower-tropospheric mode in an easterly sheared background and an upper-tropospheric mode in a westerly sheared background. Energetic diagnoses demonstrate that when the disturbance is trapped in the lower (upper) level by easterly (westerly) shear, the horizontal mean flow in the lower (upper) level favors wave growth by converting energy from the shear of the zonal mean flow (from the convergence of the meridional mean flow). During the penetration of a westward-propagating synoptic-scale disturbance from a westerly sheared flow into an easterly sheared flow, the upper-level disturbance decays, and the lower-level disturbance intensifies. Meanwhile, the upper-level kinetic energy is transferred downward, but the effect induces the wave growth only confined to the midlevels. Consequently, the low-level growth of the westward-propagating upper-level synoptic-scale disturbance is mainly attributed to the barotropic conversion of horizontal mean flow in the lower troposphere.

Full access