Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Will McCarty x
  • Global Precipitation Measurement (GPM): Science and Applications x
  • All content x
Clear All Modify Search
Zhaoxia Pu, Chaulam Yu, Vijay Tallapragada, Jianjun Jin, and Will McCarty


The impact of assimilating Global Precipitation Measurement (GPM) Microwave Imager (GMI) clear-sky radiance on the track and intensity forecasts of two Atlantic hurricanes during the 2015 and 2016 hurricane seasons is assessed using the Hurricane Weather Research and Forecasting (HWRF) Model. The GMI clear-sky brightness temperature is assimilated using a Gridpoint Statistical Interpolation (GSI)-based hybrid ensemble–variational data assimilation system, which utilizes the Community Radiative Transfer Model (CRTM) as a forward operator for satellite sensors. A two-step bias correction approach, which combines a linear regression procedure and variational bias correction, is used to remove most of the systematic biases prior to data assimilation. Forecast results show that assimilating GMI clear-sky radiance has positive impacts on both track and intensity forecasts, with the extent depending on the phase of hurricane evolution. Forecast verifications against dropsonde soundings and reanalysis data show that assimilating GMI clear-sky radiance, when it does not overlap with overpasses of other microwave sounders, can improve forecasts of both thermodynamic (e.g., temperature and specific humidity) and dynamic variables (geopotential height and wind field), which in turn lead to better track forecasts and a more realistic hurricane inner-core structure. Even when other microwave sounders are present (e.g., AMSU-A, ATMS, MHS, etc.), the assimilation of GMI still reduces temperature forecast errors in the near-hurricane environment, which has a significant impact on the intensity forecast.

Open access