Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Xiaoming Li x
  • Journal of Climate x
  • All content x
Clear All Modify Search
Zhenning Li, Song Yang, Xiaoming Hu, Wenjie Dong, and Bian He


In this study, El Niño events are classified as long El Niño (LE) events and short El Niño (SE) events based on their durations, and the characteristics of the early stages of these events are investigated. Results indicate that LE events tend to start earlier compared to SE events, initiating in boreal spring and peaking in winter. Their early occurrence is attributed to the western equatorial Pacific (WEP) sea surface wind anomalies that benefit the eastward propagation of warm water by forcing the downwelling Kelvin waves. It is also found that the wind anomalies are potentially induced by the convection anomalies over the WEP in spring. Experiments with a fully coupled climate model forced by convection heating anomalies over the WEP show that El Niño events become stronger and longer after introducing anomalous convection heating. The convection anomalies induce an extensive anomalous westerly belt over the WEP, which charges El Niño by eastward-propagating Kelvin waves. Moreover, induced by the anomalously northward-shifted ITCZ heating and the suppressed heating over the Maritime Continent, the equatorially asymmetric westerly belt reduces the meridional shear of mean easterly wind in the lower latitudes, which maintains an anomalous equatorward Sverdrup transport and in turn prolongs the persistence of El Niño events. A case study of the 2015/16 super El Niño and a regression study by using a rainfall index in critical regions support the above results.

Open access
Xiaoming Hu, Yana Li, Song Yang, Yi Deng, and Ming Cai


This study examines at the process level the climate difference between 2002–13 and 1984–95 in ERA-Interim. A linearized radiative transfer model is used to calculate the temperature change such that its thermal radiative cooling would balance the energy flux perturbation associated with the change of an individual process, without regard to what causes the change of the process in the first place. The global mean error of the offline radiative transfer model calculations is 0.09 K, which corresponds to the upper limit of the uncertainties from a single term in the decomposition analysis.

The process-based decomposition indicates that the direct effect of the increase of CO2 (0.15 K) is the largest contributor to the global warming between the two periods (about 0.27 K). The second and third largest contributors are the cloud feedback (0.14 K) and the combined effect of the oceanic heat storage and evaporation terms (0.11 K), respectively. The largest warming associated with the oceanic heat storage term is found in the tropical Pacific and Indian Oceans, with relatively weaker warming over the tropical Atlantic Ocean. The increase in atmospheric moisture adds another 0.1 K to the global surface warming, but the enhancement in tropical convections acts to reduce the surface warming by 0.17 K. The ice-albedo and atmospheric dynamical feedbacks are the two leading factors responsible for the Arctic polar warming amplification (PWA). The increase of atmospheric water vapor over the Arctic region also contributes substantially to the Arctic PWA pattern.

Full access
Jianping Guo, Xinyan Chen, Tianning Su, Lin Liu, Youtong Zheng, Dandan Chen, Jian Li, Hui Xu, Yanmin Lv, Bingfang He, Yuan Li, Xiao-Ming Hu, Aijun Ding, and Panmao Zhai


The variability of the lower tropospheric temperature inversion (TI) across China remains poorly understood. Using seven years’ worth of high-resolution radiosonde measurements at 120 sites, we compile the climatology of lower tropospheric TI in terms of frequency, intensity, and depth during the period from 2011 to 2017. The TI generally exhibits strong seasonal and geographic dependencies. Particularly, the TI frequency is found to be high in winter and low in summer, likely due to the strong aerosol radiative effect in winter. The frequency of the surface-based inversion (SBI) exhibits a “west low, east high” pattern at 0800 Beijing time (BJT), which then switches to “west high, east low” at 2000 BJT. Both the summertime SBI and elevated inversion (EI) reach a peak at 0800 BJT and a trough at 1400 BJT. Interestingly, the maximum wintertime EI frequency occurs over Southeast China (SEC) rather than over the North China Plain (NCP), likely attributable to the combination of the heating effect of black carbon (BC) originating from the NCP, along with the strong subsidence and trade inversion in SEC. Correlation analyses between local meteorology and TI indicate that larger lower tropospheric stability (LTS) favors more frequent and stronger TIs, whereas the stronger EI under smaller LTS conditions (unstable atmosphere) is more associated with subsidence rather than BC. Overall, the spatial pattern of the lower tropospheric TI and its variability in China are mainly controlled by three factors: local meteorology, large-scale subsidence, and BC-induced heating. These findings help shed some light on the magnitude, spatial distribution, and underlying mechanisms of the lower tropospheric TI variation in China.

Open access