Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Yang Cao x
  • Journal of Applied Meteorology and Climatology x
  • All content x
Clear All Modify Search
Qing Cao, Yang Hong, Jonathan J. Gourley, Youcun Qi, Jian Zhang, Yixin Wen, and Pierre-Emmanuel Kirstetter


This study presents a statistical analysis of the vertical structure of precipitation measured by NASA–Japan Aerospace Exploration Agency’s (JAXA) Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) in the region of southern California, Arizona, and western New Mexico, where the ground-based Next-Generation Radar (NEXRAD) network finds difficulties in accurately measuring surface precipitation because of beam blockages by complex terrain. This study has applied TRMM PR version-7 products 2A23 and 2A25 from 1 January 2000 to 26 October 2011. The seasonal, spatial, intensity-related, and type-related variabilities are characterized for the PR vertical profile of reflectivity (VPR) as well as the heights of storm, freezing level, and bright band. The intensification and weakening of reflectivity at low levels in the VPR are studied through fitting physically based VPR slopes. Major findings include the following: precipitation type is the most significant factor determining the characteristics of VPRs, the shape of VPRs also influences the intensity of surface rainfall rates, the characteristics of VPRs have a seasonal dependence with strong similarities between the spring and autumn months, and the spatial variation of VPR characteristics suggests that the underlying terrain has an impact on the vertical structure. The comprehensive statistical and physical analysis strengthens the understanding of the vertical structure of precipitation and advocates for the approach of VPR correction to improve surface precipitation estimation in complex terrain.

Full access
Yixin Wen, Yang Hong, Guifu Zhang, Terry J. Schuur, Jonathan J. Gourley, Zac Flamig, K. Robert Morris, and Qing Cao


Ground-based polarimetric weather radar is arguably the most powerful validation tool that provides physical insight into the development and interpretation of spaceborne weather radar algorithms and observations. This study aims to compare and resolve discrepancies in hydrometeor retrievals and reflectivity observations between the NOAA/National Severe Storm Laboratory “proof of concept” KOUN polarimetric Weather Surveillance Radar-1988 Doppler (WSR-88D) and the spaceborne precipitation radar (PR) on board NASA’s Tropical Rainfall Measuring Mission (TRMM) platform. An intercomparison of PR and KOUN melting-layer heights retrieved from 2 to 5 km MSL shows a high correlation coefficient of 0.88 with relative bias of 5.9%. A resolution volume–matching technique is used to compare simultaneous TRMM PR and KOUN reflectivity observations. The comparisons reveal an overall bias of <0.2% between PR and KOUN. The bias is hypothesized to be from non-Rayleigh scattering effects and/or errors in attenuation correction procedures applied to Ku-band PR measurements. By comparing reflectivity with respect to different hydrometeor types (as determined by KOUN’s hydrometeor classification algorithm), it is found that the bias is from echoes that are classified as rain–hail mixture, wet snow, graupel, and heavy rain. These results agree with expectations from backscattering calculations at Ku and S bands, but with the notable exception of dry snow. Comparison of vertical reflectivity profiles shows that PR suffers significant attenuation at lower altitudes, especially in convective rain and in the melting layer. The attenuation correction performs very well for both stratiform and convective rain, however. In light of the imminent upgrade of the U.S. national weather radar network to include polarimetric capabilities, the findings in this study will potentially serve as the basis for nationwide validation of space-based precipitation products and also invite synergistic development of coordinated space–ground multisensor precipitation products.

Full access