Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Yang Cao x
  • Journal of Hydrometeorology x
  • All content x
Clear All Modify Search
Youcun Qi, Jian Zhang, Qing Cao, Yang Hong, and Xiao-Ming Hu


Mesoscale convective systems (MCSs) contain both regions of convective and stratiform precipitation, and a bright band (BB) is often found in the stratiform region. Inflated reflectivity intensities in the BB often cause positive biases in radar quantitative precipitation estimation (QPE). A vertical profile of reflectivity (VPR) correction is necessary to reduce such biases. However, existing VPR correction methods for ground-based radars often perform poorly for MCSs owing to their coarse resolution and poor coverage in the vertical direction, especially at far ranges. Spaceborne radars such as the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), on the other hand, can provide high resolution VPRs. The current study explores a new approach of incorporating the TRMM VPRs into the VPR correction for the Weather Surveillance Radar-1988 Doppler (WSR-88D) radar QPE. High-resolution VPRs derived from the Ku-band TRMM PR data are converted into equivalent S-band VPRs using an empirical technique. The equivalent S-band TRMM VPRs are resampled according to the WSR-88D beam resolution, and the resampled (apparent) VPRs are then used to correct for BB effects in the WSR-88D QPE when the ground radar VPR cannot accurately capture the BB bottom. The new scheme was tested on six MCSs from different regions in the United States and it was shown to provide effective mitigation of the radar QPE errors due to BB contamination.

Restricted access
Yixin Wen, Qing Cao, Pierre-Emmanuel Kirstetter, Yang Hong, Jonathan J. Gourley, Jian Zhang, Guifu Zhang, and Bin Yong


This study proposes an approach that identifies and corrects for the vertical profile of reflectivity (VPR) by using Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) measurements in the region of Arizona and southern California, where the ground-based Next Generation Weather Radar (NEXRAD) finds difficulties in making reliable estimations of surface precipitation amounts because of complex terrain and limited radar coverage. A VPR identification and enhancement (VPR-IE) method based on the modeling of the vertical variations of the equivalent reflectivity factor using a physically based parameterization is employed to obtain a representative VPR at S band from the TRMM PR measurement at Ku band. Then the representative VPR is convolved with ground radar beam sampling properties to compute apparent VPRs for enhancing NEXRAD quantitative precipitation estimation (QPE). The VPR-IE methodology is evaluated with several stratiform precipitation events during the cold season and is compared to two other statistically based correction methods, that is, the TRMM PR–based rainfall calibration and a range ring–based adjustment scheme. The results show that the VPR-IE has the best overall performance and provides much more accurate surface rainfall estimates than the original ground-based radar QPE. The potential of the VPR-IE method could be further exploited and better utilized when the Global Precipitation Measurement Mission's dual-frequency PR is launched in 2014, with anticipated accuracy improvements and expanded latitude coverage.

Restricted access
Yixin Wen, Pierre Kirstetter, Yang Hong, Jonathan J. Gourley, Qing Cao, Jian Zhang, Zac Flamig, and Xianwu Xue


Over mountainous terrain, ground weather radars face limitations in monitoring surface precipitation as they are affected by radar beam blockages along with the range-dependent biases due to beam broadening and increase in altitude with range. These issues are compounded by precipitation structures that are relatively shallow and experience growth at low levels due to orographic enhancement. To improve surface precipitation estimation, researchers at the University of Oklahoma have demonstrated the benefits of integrating the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) products into the ground-based NEXRAD rainfall estimation system using a vertical profile of reflectivity (VPR) identification and enhancement (VPR-IE) approach. However, the temporal resolution of TRMM limits the application of VPR-IE method operationally. To implement the VPR-IE concept into the National Mosaic and Multi-Sensor QPE (NMQ) system in real time, climatological VPRs from 11 years of TRMM PR observations have been characterized for different stratiform/convective rain types, seasons, and surface rain intensities. Then, these representative profiles are used to adjust ground radar–based precipitation estimates in the NMQ system based on different precipitation structures. This study conducts a comprehensive evaluation of the newly developed climatological VPR-IE (CVPR-IE) method on winter events (January, February, and December) in 2011. The statistical analysis reveals that the CVPR-IE method provides a clear improvement over the original radar QPE in the NMQ system for the study region. Compared to physically based VPRs from real-time PR measurements, climatological VPRs have limitations in representing precipitation structure for individual events. A hybrid correction scheme incorporating both climatological and real-time VPR information is desired for better skill in the future.

Full access