Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Yang Gao x
  • Journal of the Atmospheric Sciences x
  • All content x
Clear All Modify Search
Quan Liu, Jiannong Quan, Xingcan Jia, Zhaobin Sun, Xia Li, Yang Gao, and Yangang Liu

Abstract

Aerosol samples were collected over Beijing, China, during several flights in November 2011. Aerosol composition of nonrefractory submicron particles (NR-PM1) was measured by an Aerodyne compact time-of-flight aerosol mass spectrometer (C-ToF-AMS). This measurement on the aircraft provided vertical distribution of aerosol species over Beijing, including sulfate (SO4), nitrate (NO3), ammonium (NH4), chloride (Chl), and organic aerosols [OA; hydrocarbon-like OA (HOA) and oxygenated OA (OOA)]. The observations showed that aerosol compositions varied drastically with altitude, especially near the top of the planetary boundary layer (PBL). On average, organics (34%) and nitrate (32%) were dominant components in the PBL, followed by ammonium (15%), sulfate (14%), and chloride (4%); in the free troposphere (FT), sulfate (34%) and organics (28%) were dominant components, followed by ammonium (20%), nitrate (19%), and chloride (1%). The dominant OA species was primarily HOA in the PBL but changed to OOA in the FT. For sulfate, nitrate, and ammonium, the sulfate mass fraction increased from the PBL to the FT, nitrate mass fraction decreased, and ammonium remained relatively constant. Analysis of the sulfate-to-nitrate molar ratio further indicated that this ratio was usually less than one in the FT but larger than one in the PBL. Further analysis revealed that the vertical aerosol composition profiles were influenced by complex processes, including PBL structure, regional transportation, emission variation, and the aging process of aerosols and gaseous precursors during vertical diffusion.

Full access
Baojun Chen, Jun Yang, Ruiquan Gao, Keping Zhu, Chungen Zou, Yi Gong, and Ran Zhang

Abstract

Raindrop size distribution (DSD) characteristics at various altitudes in two landfalling typhoons in 2017 (Hato and Pakhar) were investigated by using laser-optical disdrometers mounted at four altitudes (10, 40, 160, and 320 m) of the Shenzhen 356-m meteorological tower. Significant differences of the DSD and derived parameters, mass-weighted mean diameter (D m), normalized intercept parameter (N W), and standard deviation of the mass distribution σ m, were observed at different altitudes for the two typhoons, while the rainwater content between the four altitudes had no statistically significant differences. The low-altitude DSDs had more midsize drops (1 < D < 3 mm), fewer large drops (D > 3 mm), and narrower distribution widths than the high-altitude ones, while the concentration of small drops varied nonlinearly with height. The value of N W decreased with height, while D m and σ m increased with height. The gamma distribution parameters N 0, μ, and Λ are found to increase with decreasing height. Both the derived μ–Λ and ZR relations were significantly varied in different altitudes.

Restricted access
Joonsuk Lee, Ping Yang, Andrew E. Dessler, Bo-Cai Gao, and Steven Platnick

Abstract

To understand the radiative impact of tropical thin cirrus clouds, the frequency of occurrence and optical depths of these clouds have been derived. “Thin” cirrus clouds are defined here as being those that are not detected by the operational Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask, corresponding to an optical depth value of approximately 0.3 or smaller, but that are detectable in terms of the cirrus reflectance product based on the MODIS 1.375-μm channel. With such a definition, thin cirrus clouds were present in more than 40% of the pixels flagged as “clear sky” by the operational MODIS cloud mask algorithm. It is shown that these thin cirrus clouds are frequently observed in deep convective regions in the western Pacific. Thin cirrus optical depths were derived from the cirrus reflectance product. Regions of significant cloud fraction and large optical depths were observed in the Northern Hemisphere during the boreal spring and summer and moved southward during the boreal autumn and winter. The radiative effects of tropical thin cirrus clouds were studied on the basis of the retrieved cirrus optical depths, the atmospheric profiles derived from the Atmospheric Infrared Sounder (AIRS) observations, and a radiative transfer model in conjunction with a parameterization of ice cloud spectral optical properties. To understand how these clouds regulate the radiation field in the atmosphere, the instantaneous net fluxes at the top of the atmosphere (TOA) and at the surface were calculated. The present study shows positive and negative net forcings at the TOA and at the surface, respectively. The positive (negative) net forcing at the TOA (surface) is due to the dominance of longwave (shortwave) forcing. Both the TOA and surface forcings are in a range of 0–20 W m−2, depending on the optical depths of thin cirrus clouds.

Full access