Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Yang Gao x
  • Journal of Physical Oceanography x
  • All content x
Clear All Modify Search
Guan Dong Gao, Xiao Hua Wang, Dehai Song, Xianwen Bao, Bao Shu Yin, De Zhou Yang, Yang Ding, Haoqian Li, Fang Hou, and Zhaopeng Ren

Abstract

Wave–current interactions are crucial to suspended-sediment dynamics, but the roles of the associated physical mechanisms, the depth-dependent wave radiation stress, Stokes drift velocity, vertical transfer of wave-generated pressure transfer to the mean momentum equation (form drag), wave dissipation as a source term in the turbulence kinetic energy equation, and mean current advection and refraction of wave energy, have not yet been fully understood. Therefore, in this study, a computationally fast wave model developed by Mellor et al., a Finite Volume Coastal Ocean Model (FVCOM) hydrodynamics model, and the sediment model developed by the University of New South Wales are two-way coupled to study the effect of each wave–current interaction mechanism on suspended-sediment dynamics near shore during strong wave events in a tidally dominated and semiclosed bay, Jiaozhou Bay, as a case study. Comparison of Geostationary Ocean Color Imager data and model results demonstrates that the inclusion of just the combined wave–current bottom stress in the model, as done in most previous studies, is clearly far from adequate to model accurately the suspended-sediment dynamics. The effect of each mechanism in the wave–current coupled processes is also investigated separately through numerical simulations. It is found that, even though the combined wave–current bottom stress has the largest effect, the combined effect of the other wave–current interactions, mean current advection and refraction of wave energy, wave radiation stress, and form drag (from largest to smallest effect), are comparable. These mechanisms can cause significant variation in the current velocities, vertical mixing, and even the bottom stress, and should obviously be paid more attention when modeling suspended-sediment dynamics during strong wave events.

Full access
Yang Yu, Shu-Hua Chen, Yu-Heng Tseng, Xinyu Guo, Jie Shi, Guangliang Liu, Chao Zhang, Yi Xu, and Huiwang Gao

Abstract

The impacts of diurnal atmospheric forcing on the summer salinity change in the East China Sea are investigated using the Regional Ocean Modeling System, forced by the hourly and daily reanalysis of wind and insolation. The differences between the forcing of these two frequencies reveal a dipole pattern of salinity change with a positive salinity deviation (1–2 psu) offshore of the Yangtze River estuary, and a negative deviation (from −1 to −0.5 psu) along the Jiangsu Coast. Further dye tracking experiments confirm that diurnal forcing strengthened the northwestward longshore freshwater transport (NLFT) of the Yangtze River by 5.2 × 109 m3 and reduced the mean water age of 7 days. Sensitivity experiments using different forcing combinations suggest that the diurnal wind, that is, the land–sea breeze, is the key to developing the dipole pattern of salinity change and the NLFT. Through the experiment, the land–sea breeze induced a mean clockwise circulation offshore of the Yangtze River estuary. The above changes resulted from both the nonlinearity of wind stress averaging (i.e., the square nature of wind stress) and the baroclinic adjustment related to the diurnal salinity variation, which is directly connected to the diurnal swing of the Yangtze River front. The baroclinic adjustment generated a dipole pattern of vorticity changes offshore of the Yangtze River estuary and a coherent northwestward jet current strengthening the NLFT. These processes developed the summer dipole pattern of the salinity change.

Free access