Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Yang Lu x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All Modify Search
Jun Yang, Zhiqing Zhang, Caiying Wei, Feng Lu, and Qiang Guo


China is developing a new generation of geostationary meteorological satellites called Fengyun-4 (FY-4), which is planned for launch beginning in 2016. Following upon the current FY-2 satellite series, FY-4 will carry four new instruments: the Advanced Geosynchronous Radiation Imager (AGRI), the Geosynchronous Interferometric Infrared Sounder (GIIRS), the Lightning Mapping Imager (LMI), and the Space Environment Package (SEP). The first satellite of the FY-4 series launched on 11 December 2016 is experimental, and the following four or more satellites will be operational.

The main objectives of the FY-4 series are to monitor rapidly changing weather systems and to improve warning and forecasting capabilities. The FY-4 measurements are aimed at accomplishing 1) high temporal and spatial resolution imaging in 14 spectral bands from the visible, near-infrared, and infrared (IR) spectral regions; 2) lightning imaging; and 3) high-spectral-resolution IR sounding observations over China and adjacent regions. FY-4 will also enhance the space weather monitoring and warning with SEP. Current products from FY-2 will be improved by FY-4, and a number of new products will also be introduced. FY-4’s sounding and imaging data will be used to improve applications in a wide range of ocean, land, and atmosphere monitoring plus forecasting extreme weather (especially typhoons and thunderstorms); overall, FY-4 will contribute to more accurate understanding and forecasting of China’s weather, climate, environment, and natural disasters. This new generation of Chinese geostationary weather satellites is being developed in parallel with the new generation of geostationary meteorological satellite systems from the international community of satellite providers and is intended to be an important contribution to the global observing system.

Full access
Chaohua Dong, Jun Yang, Wenjian Zhang, Zhongdong Yang, Naimeng Lu, Jinming Shi, Peng Zhang, Yujie Liu, and Bin Cai

FengYun-3A (FY-3A), the first satellite in the second generation of the Chinese polar-orbiting meteorological satellites, was launched at Taiyuan, China, launching center on 27 May 2008. Equipped with both sounding and imaging payloads, enabling more powerful observations than the first generation of the FY-1 series, FY-3A carries 11 instruments. Two of them are the same as those on FY-1C/D, while the others, whose spectral bands cover violet, visible, near-infrared, infrared, and microwave spectral regions, are all newly developed. FY-3A instruments can be used to detect and study weather, clouds, radiation, climate, atmosphere, land, ocean, and other environmental features. FY-3A check out took about 5 months following its launch; FY-3A has been operational since January 2009. The plan for the future FY-3 series is to operate two polar-orbiting spacecraft—one in the morning and the other in the afternoon orbit—with different payloads for each spacecraft. This orbit configuration will be further coordinated with the World Meteorological Organization (WMO). One low-inclination orbit spacecraft is under consideration for radar and passive microwave precipitation measurement missions. Details are under discussion and yet to be determined. An overview of the first launch, FY-3A (the second generation of the Chinese meteorological satellites), and its imaging and sounding capabilities and potential applications are given in this paper.

Full access
Fan Yang, Qing He, Jianping Huang, Ali Mamtimin, Xinghua Yang, Wen Huo, Chenglong Zhou, Xinchun Liu, Wenshou Wei, Caixia Cui, Minzhong Wang, Hongjun Li, Lianmei Yang, Hongsheng Zhang, Yuzhi Liu, Xinqian Zheng, Honglin Pan, Lili Jin, Han Zou, Libo Zhou, Yongqiang Liu, Jiantao Zhang, Lu Meng, Yu Wang, Xiaolin Qin, Yongjun Yao, Houyong Liu, Fumin Xue, and Wei Zheng


As the second-largest shifting sand desert worldwide, the Taklimakan Desert (TD) represents the typical aeolian landforms in arid regions as an important source of global dust aerosols. It directly affects the ecological environment and human health across East Asia. Thus, establishing a comprehensive environment and climate observation network for field research in the TD region is essential to improve our understanding of the desert meteorology and environment, assess its impact, mitigate potential environmental issues, and promote sustainable development. With a nearly 20-yr effort under the extremely harsh conditions of the TD, the Desert Environment and Climate Observation Network (DECON) has been established completely covering the TD region. The core of DECON is the Tazhong station in the hinterland of the TD. Moreover, the network also includes 4 satellite stations located along the edge of the TD for synergistic observations, and 18 automatic weather stations interspersed between them. Thus, DECON marks a new chapter of environmental and meteorological observation capabilities over the TD, including dust storms, dust emission and transport mechanisms, desert land–atmosphere interactions, desert boundary layer structure, ground calibration for remote sensing monitoring, and desert carbon sinks. In addition, DECON promotes cooperation and communication within the research community in the field of desert environments and climate, which promotes a better understanding of the status and role of desert ecosystems. Finally, DECON is expected to provide the basic support necessary for coordinated environmental and meteorological monitoring and mitigation, joint construction of ecologically friendly communities, and sustainable development of central Asia.

Full access
Hanqin Tian, Jia Yang, Chaoqun Lu, Rongting Xu, Josep G. Canadell, Robert B. Jackson, Almut Arneth, Jinfeng Chang, Guangsheng Chen, Philippe Ciais, Stefan Gerber, Akihiko Ito, Yuanyuan Huang, Fortunat Joos, Sebastian Lienert, Palmira Messina, Stefan Olin, Shufen Pan, Changhui Peng, Eri Saikawa, Rona L. Thompson, Nicolas Vuichard, Wilfried Winiwarter, Sönke Zaehle, Bowen Zhang, Kerou Zhang, and Qiuan Zhu


Nitrous oxide (N2O) is an important greenhouse gas and also an ozone-depleting substance that has both natural and anthropogenic sources. Large estimation uncertainty remains on the magnitude and spatiotemporal patterns of N2O fluxes and the key drivers of N2O production in the terrestrial biosphere. Some terrestrial biosphere models have been evolved to account for nitrogen processes and to show the capability to simulate N2O emissions from land ecosystems at the global scale, but large discrepancies exist among their estimates primarily because of inconsistent input datasets, simulation protocol, and model structure and parameterization schemes. Based on the consistent model input data and simulation protocol, the global N2O Model Intercomparison Project (NMIP) was initialized with 10 state-of-the-art terrestrial biosphere models that include nitrogen (N) cycling. Specific objectives of NMIP are to 1) unravel the major N cycling processes controlling N2O fluxes in each model and identify the uncertainty sources from model structure, input data, and parameters; 2) quantify the magnitude and spatial and temporal patterns of global and regional N2O fluxes from the preindustrial period (1860) to present and attribute the relative contributions of multiple environmental factors to N2O dynamics; and 3) provide a benchmarking estimate of N2O fluxes through synthesizing the multimodel simulation results and existing estimates from ground-based observations, inventories, and statistical and empirical extrapolations. This study provides detailed descriptions for the NMIP protocol, input data, model structure, and key parameters, along with preliminary simulation results. The global and regional N2O estimation derived from the NMIP is a key component of the global N2O budget synthesis activity jointly led by the Global Carbon Project and the International Nitrogen Initiative.

Open access
Jinyuan Xin, Yuesi Wang, Yuepeng Pan, Dongsheng Ji, Zirui Liu, Tianxue Wen, Yinghong Wang, Xingru Li, Yang Sun, Jie Sun, Pucai Wang, Gehui Wang, Xinming Wang, Zhiyuan Cong, Tao Song, Bo Hu, Lili Wang, Guiqian Tang, Wenkang Gao, Yuhong Guo, Hongyan Miao, Shili Tian, and Lu Wang


Based on a network of field stations belonging to the Chinese Academy of Sciences (CAS), the Campaign on Atmospheric Aerosol Research network of China (CARE-China) was recently established as the country’s first monitoring network for the study of the spatiotemporal distribution of aerosol physical characteristics, chemical components, and optical properties, as well as aerosol gaseous precursors. The network comprises 36 stations in total and adopts a unified approach in terms of the instrumentation, experimental standards, and data specifications. This ongoing project is intended to provide an integrated research platform to monitor online PM2.5 concentrations, nine-size aerosol concentrations and chemical component distributions, nine-size secondary organic aerosol (SOA) component distributions, gaseous precursor concentrations (including SO2, NOx, CO, O3, and VOCs), and aerosol optical properties. The data will be used to identify the sources of regional aerosols, the relative contributions from nature and anthropogenic emissions, the formation of secondary aerosols, and the effects of aerosol component distributions on aerosol optical properties. The results will reduce the levels of uncertainty involved in the quantitative assessment of aerosol effects on regional climate and environmental changes and ultimately provide insight into how to mitigate anthropogenic aerosol emissions in China. The present paper provides a detailed description of the instrumentation, methodologies, and experimental procedures used across the network, as well as a case study of observations taken from one station and the distribution of main components of aerosol over China during 2012.

Full access
Suranjana Saha, Shrinivas Moorthi, Hua-Lu Pan, Xingren Wu, Jiande Wang, Sudhir Nadiga, Patrick Tripp, Robert Kistler, John Woollen, David Behringer, Haixia Liu, Diane Stokes, Robert Grumbine, George Gayno, Jun Wang, Yu-Tai Hou, Hui-ya Chuang, Hann-Ming H. Juang, Joe Sela, Mark Iredell, Russ Treadon, Daryl Kleist, Paul Van Delst, Dennis Keyser, John Derber, Michael Ek, Jesse Meng, Helin Wei, Rongqian Yang, Stephen Lord, Huug van den Dool, Arun Kumar, Wanqiu Wang, Craig Long, Muthuvel Chelliah, Yan Xue, Boyin Huang, Jae-Kyung Schemm, Wesley Ebisuzaki, Roger Lin, Pingping Xie, Mingyue Chen, Shuntai Zhou, Wayne Higgins, Cheng-Zhi Zou, Quanhua Liu, Yong Chen, Yong Han, Lidia Cucurull, Richard W. Reynolds, Glenn Rutledge, and Mitch Goldberg

The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global ocean's latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice model has three layers. The CFSR atmospheric model has observed variations in carbon dioxide (CO2) over the 1979–2009 period, together with changes in aerosols and other trace gases and solar variations. Most available in situ and satellite observations were included in the CFSR. Satellite observations were used in radiance form, rather than retrieved values, and were bias corrected with “spin up” runs at full resolution, taking into account variable CO2 concentrations. This procedure enabled the smooth transitions of the climate record resulting from evolutionary changes in the satellite observing system.

CFSR atmospheric, oceanic, and land surface output products are available at an hourly time resolution and a horizontal resolution of 0.5° latitude × 0.5° longitude. The CFSR data will be distributed by the National Climatic Data Center (NCDC) and NCAR. This reanalysis will serve many purposes, including providing the basis for most of the NCEP Climate Prediction Center's operational climate products by defining the mean states of the atmosphere, ocean, land surface, and sea ice over the next 30-yr climate normal (1981–2010); providing initial conditions for historical forecasts that are required to calibrate operational NCEP climate forecasts (from week 2 to 9 months); and providing estimates and diagnoses of the Earth's climate state over the satellite data period for community climate research.

Preliminary analysis of the CFSR output indicates a product that is far superior in most respects to the reanalysis of the mid-1990s. The previous NCEP–NCAR reanalyses have been among the most used NCEP products in history; there is every reason to believe the CFSR will supersede these older products both in scope and quality, because it is higher in time and space resolution, covers the atmosphere, ocean, sea ice, and land, and was executed in a coupled mode with a more modern data assimilation system and forecast model.

Full access