Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Yohan Ruprich-Robert x
  • Journal of Climate x
  • All content x
Clear All Modify Search
Saïd Qasmi, Emilia Sanchez-Gomez, Yohan Ruprich-Robert, Julien Boé, and Christophe Cassou

Abstract

The influence of the Atlantic multidecadal variability (AMV) and its amplitude on the Euro-Mediterranean summer climate is studied in two climate models, namely CNRM-CM5 and EC-Earth3P. Large ensembles of idealized experiments have been conducted in which North Atlantic sea surface temperatures are relaxed toward different amplitudes of the observed AMV anomalies. In agreement with observations, during a positive phase of the AMV both models simulate an increase (decrease) in temperature of 0.2°–0.8°C and a decrease (increase) in precipitation over the Mediterranean basin of 0.1–0.2 mm day−1 (northern half of Europe) compared to a negative phase. Heatwave durations over the Mediterranean land regions are 40% (up to 85% over the eastern regions) longer for a moderate amplitude of the AMV. Lower and higher amplitudes lead to longer durations of ~30% and ~100%, respectively. A comparison with observed heatwaves indicates that the AMV can considerably modulate the current anthropogenically forced response on heatwaves durations depending on the area and on the AMV amplitude. The related anticyclonic anomalies over the Mediterranean basin are associated with drier soils and a reduction of cloud cover, which concomitantly induce a decrease (increase) of the latent (sensible) heat flux, and an enhancement of the downward radiative fluxes over lands. It is found that both tropical and extratropical forcings from the AMV are needed to trigger mechanisms, which modulate the atmospheric circulation over the Euro-Atlantic region. The amplitude of the local climate response over the Mediterranean basin evolves linearly with the amplitude of the AMV. However, the strength of this relationship differs between the models, and depends on their intrinsic biases.

Restricted access
Yohan Ruprich-Robert, Thomas Delworth, Rym Msadek, Frederic Castruccio, Stephen Yeager, and Gokhan Danabasoglu

Abstract

The impacts of the Atlantic multidecadal variability (AMV) on summertime North American climate are investigated using three coupled global climate models (CGCMs) in which North Atlantic sea surface temperatures (SSTs) are restored to observed AMV anomalies. Large ensemble simulations are performed to estimate how AMV can modulate the occurrence of extreme weather such as heat waves. It is shown that, in response to an AMV warming, all models simulate a precipitation deficit and a warming over northern Mexico and the southern United States that lead to an increased number of heat wave days by about 30% compared to an AMV cooling. The physical mechanisms associated with these impacts are discussed. The positive tropical Atlantic SST anomalies associated with the warm AMV drive a Matsuno–Gill-like atmospheric response that favors subsidence over northern Mexico and the southern United States. This leads to a warming of the whole tropospheric column, and to a decrease in relative humidity, cloud cover, and precipitation. Soil moisture response to AMV also plays a role in the modulation of heat wave occurrence. An AMV warming favors dry soil conditions over northern Mexico and the southern United States by driving a year-round precipitation deficit through atmospheric teleconnections coming both directly from the North Atlantic SST forcing and indirectly from the Pacific. The indirect AMV teleconnections highlight the importance of using CGCMs to fully assess the AMV impacts on North America. Given the potential predictability of the AMV, the teleconnections discussed here suggest a source of predictability for the North American climate variability and in particular for the occurrence of heat waves at multiyear time scales.

Full access
Frederic S. Castruccio, Yohan Ruprich-Robert, Stephen G. Yeager, Gokhan Danabasoglu, Rym Msadek, and Thomas L. Delworth

Abstract

Observed September Arctic sea ice has declined sharply over the satellite era. While most climate models forced by observed external forcing simulate a decline, few show trends matching the observations, suggesting either model deficiencies or significant contributions from internal variability. Using a set of perturbed climate model experiments, we provide evidence that atmospheric teleconnections associated with the Atlantic multidecadal variability (AMV) can drive low-frequency Arctic sea ice fluctuations. Even without AMV-related changes in ocean heat transport, AMV-like surface temperature anomalies lead to adjustments in atmospheric circulation patterns that produce similar Arctic sea ice changes in three different climate models. Positive AMV anomalies induce a decrease in the frequency of winter polar anticyclones, which is reflected both in the sea level pressure as a weakening of the Beaufort Sea high and in the surface temperature as warm anomalies in response to increased low-cloud cover. Positive AMV anomalies are also shown to favor an increased prevalence of an Arctic dipole–like sea level pressure pattern in late winter/early spring. The resulting anomalous winds drive anomalous ice motions (dynamic effect). Combined with the reduced winter sea ice formation (thermodynamic effect), the Arctic sea ice becomes thinner, younger, and more prone to melt in summer. Following a phase shift to positive AMV, the resulting atmospheric teleconnections can lead to a decadal ice thinning trend in the Arctic Ocean on the order of 8%–16% of the reconstructed long-term trend, and a decadal trend (decline) in September Arctic sea ice area of up to 21% of the observed long-term trend.

Open access
Yohan Ruprich-Robert, Rym Msadek, Frederic Castruccio, Stephen Yeager, Tom Delworth, and Gokhan Danabasoglu

Abstract

The climate impacts of the observed Atlantic multidecadal variability (AMV) are investigated using the GFDL CM2.1 and the NCAR CESM1 coupled climate models. The model North Atlantic sea surface temperatures are restored to fixed anomalies corresponding to an estimate of the internally driven component of the observed AMV. Both models show that during boreal summer the AMV alters the Walker circulation and generates precipitation anomalies over the whole tropical belt. A warm phase of the AMV yields reduced precipitation over the western United States, drier conditions over the Mediterranean basin, and wetter conditions over northern Europe. During boreal winter, the AMV modulates by a factor of about 2 the frequency of occurrence of El Niño and La Niña events. This response is associated with anomalies over the Pacific that project onto the interdecadal Pacific oscillation pattern (i.e., Pacific decadal oscillation–like anomalies in the Northern Hemisphere and a symmetrical pattern in the Southern Hemisphere). This winter response is a lagged adjustment of the Pacific Ocean to the AMV forcing in summer. Most of the simulated global-scale impacts are driven by the tropical part of the AMV, except for the winter North Atlantic Oscillation–like response over the North Atlantic–European region, which is driven by both the subpolar and tropical parts of the AMV. The teleconnections between the Pacific and Atlantic basins alter the direct North Atlantic local response to the AMV, which highlights the importance of using a global coupled framework to investigate the climate impacts of the AMV. The similarity of the two model responses gives confidence that impacts described in this paper are robust.

Full access
Paolo Ruggieri, Alessio Bellucci, Dario Nicolí, Panos J. Athanasiadis, Silvio Gualdi, Christophe Cassou, Fred Castruccio, Gokhan Danabasoglu, Paolo Davini, Nick Dunstone, Rosemary Eade, Guillaume Gastineau, Ben Harvey, Leon Hermanson, Saïd Qasmi, Yohan Ruprich-Robert, Emilia Sanchez-Gomez, Doug Smith, Simon Wild, and Matteo Zampieri

Abstract

The influence of the Atlantic multidecadal variability (AMV) on the North Atlantic storm track and eddy-driven jet in the winter season is assessed via a coordinated analysis of idealized simulations with state-of-the-art coupled models. Data used are obtained from a multimodel ensemble of AMV± experiments conducted in the framework of the Decadal Climate Prediction Project component C. These experiments are performed by nudging the surface of the Atlantic Ocean to states defined by the superimposition of observed AMV± anomalies onto the model climatology. A robust extratropical response is found in the form of a wave train extending from the Pacific to the Nordic seas. In the warm phase of the AMV compared to the cold phase, the Atlantic storm track is typically contracted and less extended poleward and the low-level jet is shifted toward the equator in the eastern Atlantic. Despite some robust features, the picture of an uncertain and model-dependent response of the Atlantic jet emerges and we demonstrate a link between model bias and the character of the jet response.

Open access