Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Zhuguo Ma x
  • Journal of Hydrometeorology x
  • All content x
Clear All Modify Search
Meixia Lv, Zhuguo Ma, and Naiming Yuan

Abstract

This study investigated the attribution of terrestrial water storage (TWS) variations across China to changes in groundwater and human water use. As one vital storage component, the groundwater storage (GWS) derived from the Jet Propulsion Laboratory’s GRACE (Gravity Recovery and Climate Experiment) mass concentration solution compared reasonably well with the in situ groundwater table depth, with the correlation coefficients ranging from −0.83 to −0.18, all of which were statistically significant at the 95% confidence level. About 71% of the trends in derived GWS had the same sign as those of observations, without systematic deviation, across China. The GWS variation contributed a large portion of the TWS trend in most regions of China, and the majority of contribution values reached 50%–150% in the Hai River basin, the Loess Plateau, and the middle portion of the Yangtze River basin. The dominant role of GWS is closely related to the detected long-term “memories” in both TWS and GWS. The increase of irrigation consumption accelerated the TWS depletion trend by 13.4% in the Huai River basin, while the decrease of consumptive agricultural water use alleviated the TWS decline rate by 4.1% in the Hai River basin. Importantly, the correlation coefficients reached 0.74–0.95 between the TWS change and the residual of precipitation, evapotranspiration, flow into the sea, and irrigation consumption in the four river basins of particular interest. The findings of this study are helpful for understanding regional water cycles in China.

Open access
Meixia Lv, Zhuguo Ma, Liang Chen, and Shaoming Peng

Abstract

The accurate estimation of evapotranspiration (ET) is essential for understanding the land surface–atmosphere interaction; however, current ET products have large uncertainties, and irrigation effects on ET are not well represented. In this study, the monthly ET was reconstructed (ETrecon) from GLDAS land surface models (LSMs) over the Yellow River basin of China, which was achieved by using observation-based precipitation, naturalized streamflow, and downscaled consumed irrigation water from the census annual data via an irrigation scheme. The results showed that the monthly ETrecon series were generally improved relative to the original LSM-based ET, with improvements in the correlation coefficient, Nash–Sutcliffe efficiency, mean absolute error, and root-mean-square error by 0.6%–1.8%, 1.2%–14.6%, 1.3%–21.0%, and 2.1%–20.4%, respectively. The ETrecon results were also superior to the collected ET synthesis products in terms of statistics, with generally higher peak values occurring in ETrecon. Regarding the annual time scale, the ETrecon values were close to the water balance ET values, which have been widely used as benchmark data. The interannual variability in ETrecon was good overall and was associated with the LSM precipitation variability and partitioning of precipitation into ET and runoff. The reconstruction method can provide an alternative ET estimate for other river basins. This study will also be valuable for studies and applications in climate change evaluation, drought assessment, and water resources management.

Full access