Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Zoltan Toth x
  • Mathematical Advances in Data Assimilation (MADA) x
  • All content x
Clear All Modify Search
Malaquias Peña, Zoltan Toth, and Mozheng Wei

Abstract

A variety of ad hoc procedures have been developed to prevent filter divergence in ensemble-based data assimilation schemes. These procedures are necessary to reduce the impacts of sampling errors in the background error covariance matrix derived from a limited-size ensemble. The procedures amount to the introduction of additional noise into the assimilation process, possibly reducing the accuracy of the resulting analyses. The effects of this noise on analysis and forecast performance are investigated in a perfect model scenario. Alternative schemes aimed at controlling the unintended injection of noise are proposed and compared. Improved analysis and forecast accuracy is observed in schemes with minimal alteration to the evolving ensemble-based covariance structure.

Full access