Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Zoltan Toth x
  • Third THORPEX International Science Symposium x
  • All content x
Clear All Modify Search
Sharanya J. Majumdar, Kathryn J. Sellwood, Daniel Hodyss, Zoltan Toth, and Yucheng Song


The characteristics of “target” locations of tropospheric wind and temperature identified by a modified version of the ensemble transform Kalman filter (ETKF), in order to reduce 0–7-day forecast errors over North America, are explored from the perspective of a field program planner. Twenty cases of potential high-impact weather over the continent were investigated, using a 145-member ensemble comprising perturbations from NCEP, ECMWF, and the Canadian Meteorological Centre (CMC).

Multiple targets were found to exist in the midlatitude storm track. In half of the cases, distinctive targets could be traced upstream near Japan at lead times of 4–7 days. In these cases, the flow was predominantly zonal and a coherent Rossby wave packet was present over the northern Pacific Ocean. The targets at the longest lead times were often located within propagating areas of baroclinic energy conversion far upstream. As the lead time was reduced, these targets were found to diminish in importance, with downstream targets corresponding to a separate synoptic system gaining in prominence. This shift in optimal targets is sometimes consistent with the radiation of ageostrophic geopotential fluxes and transfer of eddy kinetic energy downstream, associated with downstream baroclinic development. Concurrently, multiple targets arise due to spurious long-distance correlations in the ETKF. The targets were least coherent in blocked flows, in which the ETKF is known to be least reliable. The effectiveness of targeting in the medium range requires evaluation, using data such as those collected during the winter phase of The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Field Campaign (T-PARC) in 2009.

Full access
Mio Matsueda, Masayuki Kyouda, Zoltan Toth, H. L. Tanaka, and Tadashi Tsuyuki


Atmospheric blocking occurred over the Rocky Mountains at 1200 UTC 15 December 2005. The operational medium-range ensemble forecasts of the Canadian Meteorological Center (CMC), the Japan Meteorological Agency (JMA), and the National Centers for Environmental Prediction (NCEP), as initialized at 1200 UTC 10 December 2005, showed remarkable differences regarding this event. All of the NCEP members failed to predict the correct location of the blocking, whereas almost all of the JMA members and most of the CMC members were successful in predicting the correct location. The present study investigated the factors that caused NCEP to incorrectly predict the blocking location, based on an ensemble-based sensitivity analysis and the JMA global spectral model (GSM) multianalysis ensemble forecasts with NCEP, regionally amplified NCEP, and globally amplified NCEP analyses.

A sensitive area for the blocking formation was detected over the central North Pacific. In this area, the NCEP control analysis experienced problems in the handling of a cutoff cyclone, and the NCEP initial perturbations were ineffective in reducing uncertainties in the NCEP control analysis. The JMA GSM multianalysis ensemble forecasts revealed that regional amplification of initial perturbations over the sensitive area could lead to further improvements in forecasts over the blocking region without degradation of forecasts over the Northern Hemisphere (NH), whereas the global amplification of initial perturbations could lead to improved forecasts over the blocking region and degraded forecasts over the NH. This finding may suggest that excessive amplification of initial perturbations over nonsensitive areas is undesirable, and that case-dependent rescaling of initial perturbations may be of value compared with climatology-based rescaling, which is widely used in current operational ensemble prediction systems.

Full access