Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Ian Giammanco x
  • Journal of Applied Meteorology and Climatology x
  • All content x
Clear All Modify Search
Zhiyuan Jiang, Matthew R. Kumjian, Robert S. Schrom, Ian Giammanco, Tanya Brown-Giammanco, Heather Estes, Ross Maiden, and Andrew J. Heymsfield


Severe (>2.5 cm) hail causes >$5 billion in damage annually in the United States. However, radar sizing of hail remains challenging. Typically, spheroids are used to represent hailstones in radar forward operators and to inform radar hail-sizing algorithms. However, natural hailstones can have irregular shapes and lobes; these details significantly influence the hailstone’s scattering properties. The high-resolution 3D structure of real hailstones was obtained using a laser scanner for hail collected during the 2016–17 Insurance Institute for Business and Home Safety (IBHS) Hail Field Study. Plaster casts of several record hailstones (e.g., Vivian, South Dakota, 2010) were also scanned. The S-band scattering properties of these hailstones were calculated with the discrete dipole approximation (DDA). For comparison, scattering properties of spheroidal approximations of each hailstone (with identical maximum and minimum dimensions and mass) were calculated with the T matrix. The polarimetric radar variables have errors when using spheroids, even for small hail. Spheroids generally have smaller variations in the polarimetric variables than the real hailstones. This increased variability is one reason why the correlation coefficient tends to be lower in observations than in forward-simulated cases using spheroids. Backscatter differential phase δ also is found to have large variance, particularly for large hailstones. Irregular hailstones with a thin liquid layer produce enhanced and more variable values for reflectivity factor at horizontal polarization Z HH, differential reflectivity Z DR, specific differential phase K DP, linear depolarization ratio (LDR), and δ compared with dry hailstones; is also significantly reduced.

Full access
Ian M. Giammanco, John L. Schroeder, Forrest J. Masters, Peter J. Vickery, Richard J. Krupar III, and Juan-Antonio Balderrama


The deployment of ruggedized surface observing platforms by university research programs in the path of landfalling tropical cyclones has yielded a wealth of information regarding the near-surface wind flow characteristics. Data records collected by Texas Tech University’s Wind Engineering Mobile Instrument Tower Experiment and StickNet probes and by the Florida Coastal Monitoring Program along the Gulf Coast of the United States from 2004 to 2008 were compiled to examine influences on near-surface gust factors. Archived composite reflectivity data from coastal WSR-88D instruments were also merged with the tower records to investigate the influence of precipitation structure. Wind records were partitioned into 10-min segments, and the ratio of the peak moving-average 3-s-gust wind speed to the segment mean was used to define a gust factor. Observations were objectively stratified into terrain exposure categories to determine if factors beyond those associated with surface frictional effects can be extracted from the observations. Wind flow characteristics within exposure classes were weakly influenced by storm-relative position and precipitation structure. Eyewall observations showed little difference in mean gust factors when compared with other regions. In convective precipitation, only peak gust factors were slightly larger than those found in stratiform conditions, with little differences in the mean. Gust factors decreased slightly with decreasing radial distance in rougher terrain exposures and did not respond to radar-observed changes in precipitation structure. In two limited comparisons, near-surface gusts did not exceed the magnitude of the wind maximum aloft detected through wind profiles that were derived from WSR-88D velocity–azimuth displays.

Full access