Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Mark Smalley x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Mark Smalley and Tristan L’Ecuyer

Abstract

The spatial distribution of precipitation occurrence has important implications for numerous applications ranging from defining cloud radiative effects to modeling hydrologic runoff, statistical downscaling, and stochastic weather generation. This paper introduces a new method of describing the spatial characteristics of rainfall and snowfall that takes advantage of the high sensitivity and high resolution of the W-band cloud precipitation radar aboard CloudSat. The resolution dependence of precipitation occurrence is described by a two-parameter exponential function defined by a shape factor that governs the variation in the distances between precipitation events and a scale length that represents the overall probability of precipitation and number density of distinct events.

Geographic variations in the shape factor and scale length are consistent with large-scale circulation patterns and correlate with environmental conditions on local scales. For example, a large contrast in scale lengths between land and ocean areas reflects the more extensive, widespread nature of precipitation over land than over ocean. An analysis of warm rain in the southeast Pacific reveals a shift from frequent isolated systems to less frequent but more regularly spaced systems along a transect connecting stratocumulus and trade cumulus cloud regimes. A similar analysis during the Amazon wet season reveals a relationship between the size and frequency of convection and zonal wind direction with precipitation exhibiting a more oceanic character during periods of westerly winds. These select examples demonstrate the utility of this approach for capturing the sensitivity of the spatial characteristics of precipitation to environmental influences on both local and larger scales.

Full access
James M. Kurdzo, Earle R. Williams, David J. Smalley, Betty J. Bennett, David C. Patterson, Mark S. Veillette, and Michael F. Donovan

Abstract

Chaff is a radar countermeasure typically used by military branches in training exercises around the United States. Chaff within view of the S-band WSR-88D beam can appear prominently on radar users’ displays. Knowledge of chaff characteristics is useful for radar users to discriminate between chaff and weather echoes and for automated algorithms to do the same. The WSR-88D network provides dual-polarimetric capabilities across the United States, leading to the collection of a large database of chaff cases. This database is analyzed to determine the characteristics of chaff in terms of the reflectivity factor and polarimetric variables on large scales. Particular focus is given to the dynamics of differential reflectivity Z DR in chaff and its dependence on height. In contrast to radar observations of chaff for a single event, this study is able to reveal a repeatable and new pattern of radar chaff observations. A discussion about the observed characteristics is presented, and hypotheses for the observed Z DR dynamics are put forth.

Full access