Search Results

You are looking at 11 - 12 of 12 items for :

  • Radiative transfer x
  • Assimilation of Satellite Cloud and Precipitation Observations x
  • All content x
Clear All
Ruiyue Chen, Fu-Lung Chang, Zhanqing Li, Ralph Ferraro, and Fuzhong Weng

are not applicable over land because of the strong and highly variable microwave emission of the land surface. The emission from ocean surfaces is less variable, so cloud LWP can be estimated from satellite-observed microwave radiances. However, LWP retrieval accuracy is affected by the sea surface temperature, surface wind speed, atmospheric precipitable water vapor, and radiometric calibration while uncertainties in the absorption coefficients used in the microwave radiative transfer model also

Full access
Philippe Lopez

observations directly affected by cloud and/or precipitation (e.g., brightness temperatures, radar reflectivities, radiative fluxes) are to be assimilated, 𝗛 has to include some parameterizations of resolved and subgrid-scale moist processes and possibly a radiative transfer model as well. In 4DVAR, 𝗛 also involves the integration of the forecast model, the so-called trajectory, over the assimilation window (usually 6 or 12 h). The result of the minimization of Eq. (5) (i.e., the analysis ) can

Full access