Search Results

You are looking at 1 - 10 of 126 items for :

  • Arctic Oscillation x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All
Chidong Zhang

Pacific and minimum over Africa. SURFACE TEMPERATURE. In East Asia, two-thirds of extreme cold surges with temperature reductions greater than two standard deviations occur when MJO convection is over the Indian Ocean ( Jeong et al. 2005 ). Combined effects of the MJO and other factors (e.g., the Arctic Oscillation) might have led to an extreme cold surge with record-breaking snowfall in Korea ( Park et al. 2010 ). In general, the MJO tends to prevent weak cold surges from penetrating southward into

Full access
Carl J. Schreck III, Stephen Bennett, Jason M. Cordeira, Jake Crouch, Jenny Dissen, Andrea L. Lang, David Margolin, Adam O’Shay, Jared Rennie, Thomas Ian Schneider, and Michael J. Ventrice

statistical models is having access to datasets like NOAA’s climate data records ( National Research Council 2004 ), which are long enough to identify a large sample of past events and also have sufficient homogeneity to ensure data consistency between those events. The primary tropical teleconnections are the El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO). Key Arctic teleconnections include the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), Eurasian snow cover

Full access
Nathan B. Magee, Eli Melaas, Peter M. Finocchio, Melissa Jardel, Anthony Noonan, and Michael J. Iacono

wavelet and correlation analyses in order to detect potential periodic signals within the dataset. The wavelet analysis follows the well-established methods of Torrence and Compo (1998) , which includes tests of significance based on theoretical wavelet spectra for white and red noise. Cross correlations were tested between the daily sun fraction measurements and the daily teleconnection indices [including Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and El Niño–Southern Oscillation

Full access
Marlene Kretschmer, Dim Coumou, Laurie Agel, Mathew Barlow, Eli Tziperman, and Judah Cohen

( Cohen et al. 2013 ; Cohen 2016 ) trends in teleconnection indices, or to a combination of those. Previous research showed that a weak stratospheric polar vortex (hereafter also referred to as “polar vortex” or “vortex”) can affect surface weather via a downward influence of planetary waves ( Baldwin and Dunkerton 2001 ; Hitchcock and Simpson 2014 ), which leads to cold-air outbreaks in the midlatitudes and a negative surface Arctic Oscillation signal ( Cohen et al. 2013 ; Kolstad et al. 2010

Open access
Kevin R. Wood and James E. Overland

A unique glimpse of the Arctic from a period before the present era of climate warming is found in the records of the first International Polar Year (IPY) of 1882–83. Inspired by the Austrian scientist and explorer Carl Weyprecht, the purpose of the IPY was to discover the fundamental laws governing global meteorological and geophysical phenomena. It was understood that new discoveries would depend upon a program of simultaneous observations that encompassed the polar regions. The collection and analysis of the first series of coordinated meteorological observations ever obtained in the Arctic was one of the principal objects of the IPY. The field program was successfully completed and a vast body of data was collected, but afterward it fell into obscurity with little analysis completed.

We have analyzed for the first time the synchronous meteorological observations recorded during the first IPY. This analysis contributes to the goal of the upcoming fourth IPY scheduled for 2007–08: to understand the climate changes currently unfolding in the Arctic/Antarctic within the context of the past. We found that surface air temperature (SAT) and sea level pressure (SLP) observed during 1882–83 were within the limits of recent climatology, but with a slight skew toward colder temperatures, and showed a wide range of variability from place to place over the course of the year, which is a feature typical of the Arctic climate today. Monthly SAT, SLP, and associated phenological anomalies were regionally coherent and consistent with patterns of variability in the atmospheric circulation such as the North Atlantic Oscillation (NAO). Evidence of a strong NAO signature in the observed SAT anomalies during the first IPY highlights the impact of large-scale atmospheric circulation patterns on regional climate variability in the Arctic, both today and in the past.

Full access
Richard J. Murnane

Extreme weather events produce some of the most deadly and costly natural disasters and are a major concern of the catastrophe reinsurance industry. For example, in 1992 Hurricane Andrew caused over $20 billion (in 2002 U.S. dollars) in insured losses, the largest loss on record due to a natural disaster. In addition, 26 of the top 30 insured losses were produced by extreme weather events, mainly landfalling hurricanes and typhoons and European windstorms. A better understanding of how extreme events vary with climate would benefit the reinsurance industry and society.

The Risk Prediction Initiative hosted a workshop on Weather Extremes and Atmospheric Oscillations that examined how extreme meteorological events of interest to the reinsurance industry are influenced by the quasi-biennial oscillation (QBO), the Arctic Oscillation (AO), and the Madden–Julian oscillation (MJO). Workshop participants concluded that the stratosphere is much more relevant to predictions that aid the reinsurance industry than is generally recognized and that there is mutual interest in fostering research on the relationship between the stratospheric circulation and extreme weather events.

A preliminary science–business research agenda, based on presentations and discussions during and after the workshop, highlights four areas of mutual interest to scientists and insurers. The research areas focus mainly on understanding how the QBO, AO, and MJO influence the frequency and intensity of extreme events, with particular emphasis on tropical cyclones and European windstorms. An awareness of how the catastrophe reinsurance industry operates provides insights into why specific research areas were chosen. For example, the reinsurance industry operates on the basis of annual contracts, most of which are renewed on 1 January. Thus, although skillful forecasts at any lead are of interest, skillful forecasts of extreme events are of greatest value when made in the final quarter of a calendar year.

Full access
J. Blunden, D. S. Arndt, and M. O. Baringer

Several large-scale climate patterns influenced climate conditions and weather patterns across the globe during 2010. The transition from a warm El Niño phase at the beginning of the year to a cool La Niña phase by July contributed to many notable events, ranging from record wetness across much of Australia to historically low Eastern Pacific basin and near-record high North Atlantic basin hurricane activity. The remaining five main hurricane basins experienced below- to well-below-normal tropical cyclone activity. The negative phase of the Arctic Oscillation was a major driver of Northern Hemisphere temperature patterns during 2009/10 winter and again in late 2010. It contributed to record snowfall and unusually low temperatures over much of northern Eurasia and parts of the United States, while bringing above-normal temperatures to the high northern latitudes. The February Arctic Oscillation Index value was the most negative since records began in 1950.

The 2010 average global land and ocean surface temperature was among the two warmest years on record. The Arctic continued to warm at about twice the rate of lower latitudes. The eastern and tropical Pacific Ocean cooled about 1°C from 2009 to 2010, reflecting the transition from the 2009/10 El Niño to the 2010/11 La Niña. Ocean heat fluxes contributed to warm sea surface temperature anomalies in the North Atlantic and the tropical Indian and western Pacific Oceans. Global integrals of upper ocean heat content for the past several years have reached values consistently higher than for all prior times in the record, demonstrating the dominant role of the ocean in the Earth's energy budget. Deep and abyssal waters of Antarctic origin have also trended warmer on average since the early 1990s. Lower tropospheric temperatures typically lag ENSO surface fluctuations by two to four months, thus the 2010 temperature was dominated by the warm phase El Niño conditions that occurred during the latter half of 2009 and early 2010 and was second warmest on record. The stratosphere continued to be anomalously cool.

Annual global precipitation over land areas was about five percent above normal. Precipitation over the ocean was drier than normal after a wet year in 2009. Overall, saltier (higher evaporation) regions of the ocean surface continue to be anomalously salty, and fresher (higher precipitation) regions continue to be anomalously fresh. This salinity pattern, which has held since at least 2004, suggests an increase in the hydrological cycle.

Sea ice conditions in the Arctic were significantly different than those in the Antarctic during the year. The annual minimum ice extent in the Arctic—reached in September—was the third lowest on record since 1979. In the Antarctic, zonally averaged sea ice extent reached an all-time record maximum from mid-June through late August and again from mid-November through early December. Corresponding record positive Southern Hemisphere Annular Mode Indices influenced the Antarctic sea ice extents.

Greenland glaciers lost more mass than any other year in the decade-long record. The Greenland Ice Sheet lost a record amount of mass, as the melt rate was the highest since at least 1958, and the area and duration of the melting was greater than any year since at least 1978. High summer air temperatures and a longer melt season also caused a continued increase in the rate of ice mass loss from small glaciers and ice caps in the Canadian Arctic. Coastal sites in Alaska show continuous permafrost warming and sites in Alaska, Canada, and Russia indicate more significant warming in relatively cold permafrost than in warm permafrost in the same geographical area. With regional differences, permafrost temperatures are now up to 2°C warmer than they were 20 to 30 years ago. Preliminary data indicate there is a high probability that 2010 will be the 20th consecutive year that alpine glaciers have lost mass.

Atmospheric greenhouse gas concentrations continued to rise and ozone depleting substances continued to decrease. Carbon dioxide increased by 2.60 ppm in 2010, a rate above both the 2009 and the 1980–2010 average rates. The global ocean carbon dioxide uptake for the 2009 transition period from La Niña to El Niño conditions, the most recent period for which analyzed data are available, is estimated to be similar to the long-term average. The 2010 Antarctic ozone hole was among the lowest 20% compared with other years since 1990, a result of warmer-than-average temperatures in the Antarctic stratosphere during austral winter between mid-July and early September.

Full access
D. S. Arndt, M. O. Baringer, and M. R. Johnson

Editors note: For easy download the posted pdf of the State of the Climate for 2009 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.


The year was characterized by a transition from a waning La Niña to a strengthening El Niño, which first developed in June. By December, SSTs were more than 2.0°C above average over large parts of the central and eastern equatorial Pacific. Eastward surface current anomalies, associated with the El Niño, were strong across the equatorial Pacific, reaching values similar to the 2002 El Niño during November and December 2009. The transition from La Niña to El Niño strongly influenced anomalies in many climate conditions, ranging from reduced Atlantic basin hurricane activity to large scale surface and tropospheric warmth.

Global average surface and lower-troposphere temperatures during the last three decades have been progressively warmer than all earlier decades, and the 2000s (2000–09) was the warmest decade in the instrumental record. This warming has been particularly apparent in the mid- and high-latitude regions of the Northern Hemisphere and includes decadal records in New Zealand, Australia, Canada, Europe, and the Arctic. The stratosphere continued a long cooling trend, except in the Arctic.

Atmospheric greenhouse gas concentrations continued to rise, with CO2 increasing at a rate above the 1978 to 2008 average. The global ocean CO2 uptake flux for 2008, the most recent year for which analyzed data are available, is estimated to have been 1.23 Pg C yr−1, which is 0.25 Pg C yr−1 smaller than the long-term average and the lowest estimated ocean uptake in the last 27 years. At the same time, the total global ocean inventory of anthropogenic carbon stored in the ocean interior as of 2008 suggests an uptake and storage of anthropogenic CO2 at rates of 2.0 and 2.3 ±0.6 Pg C yr−1 for the decades of the 1990s and 2000s, respectively. Total-column ozone concentrations are still well below pre-1980 levels but have seen a recent reduction in the rate of decline while upper-stratospheric ozone showed continued signs of ongoing slow recovery in 2009. Ozone-depleting gas concentrations continued to decline although some halogens such as hydrochlorofluorocarbons are increasing globally. The 2009 Antarctic ozone hole was comparable in size to recent previous ozone holes, while still much larger than those observed before 1990. Due to large interannual variability, it is unclear yet whether the ozone hole has begun a slow recovery process.

Global integrals of upper-ocean heat content for the last several years have reached values consistently higher than for all prior times in the record, demonstrating the dominant role of the oceans in the planet's energy budget. Aside from the El Niño development in the tropical Pacific and warming in the tropical Indian Ocean, the Pacific Decadal Oscillation (PDO) transitioned to a positive phase during the fall/winter 2009. Ocean heat fluxes contributed to SST anomalies in some regions (e.g., in the North Atlantic and tropical Indian Oceans) while dampening existing SST anomalies in other regions (e.g., the tropical and extratropical Pacific). The downward trend in global chlorophyll observed since 1999 continued through 2009, with current chlorophyll stocks in the central stratified oceans now approaching record lows since 1997.

Extreme warmth was experienced across large areas of South America, southern Asia, Australia, and New Zealand. Australia had its second warmest year on record. India experienced its warmest year on record; Alaska had its second warmest July on record, behind 2004; and New Zealand had its warmest August since records began 155 years ago. Severe cold snaps were reported in the UK, China, and the Russian federation. Drought affected large parts of southern North America, the Caribbean, South America, and Asia. China suffered its worst drought in five decades. India had a record dry June associated with the reduced monsoon. Heavy rainfall and floods impacted Canada, the United States, the Amazonia and southern South America, many countries along the east and west coasts of Africa, and the UK. The U.S. experienced its wettest October in 115 years and Turkey received its heaviest rainfall over a 48-hr period in 80 years.

Sea level variations during 2009 were strongly affected by the transition from La Niña to El Niño conditions, especially in the tropical Indo-Pacific. Globally, variations about the long-term trend also appear to have been influenced by ENSO, with a slight reduction in global mean sea level during the 2007/08 La Niña event and a return to the long-term trend, and perhaps slightly higher values, during the latter part of 2009 and the current El Niño event. Unusually low florida Current transports were observed in May and June and were linked to high sea level and coastal flooding along the east coast of the United States in the summer. Sea level significantly decreased along the Siberian coast through a combination of wind, ocean circulation, and steric effects. Cloud and moisture increased in the tropical Pacific. The surface of the western equatorial Pacific freshened considerably from 2008 to 2009, at least partially owing to anomalous eastward advection of fresh surface water along the equator during this latest El Niño. Outside the more variable tropics, the surface salinity anomalies associated with evaporation and precipitation areas persisted, consistent with an enhanced hydrological cycle.

Global tropical cyclone (TC) activity was the lowest since 2005, with six of the seven main hurricane basins (the exception is the Eastern North Pacific) experiencing near-normal or somewhat below-normal TC activity. Despite the relatively mild year for overall hurricane activity, several storms were particularly noteworthy: Typhoon Morakot was the deadliest typhoon on record to hit Taiwan; Cyclone Hamish was the most intense cyclone off Queensland since 1918; and the state of Hawaii experienced its first TC since 1992.

The summer minimum ice extent in the Arctic was the third-lowest recorded since 1979. The 2008/09 boreal snow cover season marked a continuation of relatively shorter snow seasons, due primarily to an early disappearance of snow cover in spring. Preliminary data indicate a high probability that 2009 will be the 19th consecutive year that glaciers have lost mass. Below normal precipitation led the 34 widest marine terminating glaciers in Greenland to lose 101 km2 ice area in 2009, within an annual loss rate of 106 km2 over the past decade. Observations show a general increase in permafrost temperatures during the last several decades in Alaska, northwest Canada, Siberia, and Northern Europe. Changes in the timing of tundra green-up and senescence are also occurring, with earlier green-up in the High Arctic and a shift to a longer green season in fall in the Low Arctic.

The Antarctic Peninsula continues to warm at a rate five times larger than the global mean warming. Associated with the regional warming, there was significant ice loss along the Antarctic Peninsula in the last decade. Antarctic sea ice extent was near normal to modestly above normal for the majority of 2009, with marked regional contrasts within the record. The 2008/09 Antarctic-wide austral summer snowmelt was the lowest in the 30-year history.

This 20th annual State of the Climate report highlights the climate conditions that characterized 2009, including notable extreme events. In total, 37 Essential Climate Variables are reported to more completely characterize the State of the Climate in 2009.

Full access
Katharine S. Law, Andreas Stohl, Patricia K. Quinn, Charles A. Brock, John F. Burkhart, Jean-Daniel Paris, Gerard Ancellet, Hanwant B. Singh, Anke Roiger, Hans Schlager, Jack Dibb, Daniel J. Jacob, Steve R. Arnold, Jacques Pelon, and Jennie L. Thomas

than usual, over eastern Asia and the northern Pacific, but were less common over the North Atlantic during spring. Frequent cyclone activity also occurred over the Pacific during summer 2008. At the same time, the North Atlantic Oscillation (NAO) transitioned toward a negative state in spring and remained so for the summer campaigns. Such a negative NAO state is associated with reduced pollution transport toward the Arctic ( Burkhart et al. 2006 ), especially from Europe, compared to the mean

Full access
Jennifer A. Francis

late fall that disrupts and weakens the stratospheric polar vortex. Weeks to months later, the weakened polar vortex transfers the wave anomaly back to the troposphere, evident as a negative Arctic Oscillation, which effectively perpetuates the influence of autumn AA on late-winter circulation patterns. Other studies comparing simulations with well versus poorly resolved stratospheres find differing responses, implying an important role for troposphere–stratosphere exchanges ( Sun et al. 2015

Open access