Search Results

You are looking at 1 - 6 of 6 items for :

  • Forecasting x
  • Weather and Forecasting x
  • Tropical Cyclone Intensity Experiment (TCI) x
  • All content x
Clear All
T. Ghosh and T. N. Krishnamurti

1. Introduction Consensus forecasts for meteorological events were operationally used in the pioneering studies of Toth and Kalnay (1993 1997 ), Molteni et al. (1996) , Houtekamer et al. (1996) , and Goerss (2000) . Krishnamurti et al. (1999) introduced the notion of a multimodel superensemble (MMSE) to combine multimodel forecast datasets using a linear multiple regression approach that utilized the mean-square error reduction principle. Studies reported on the efficiency of this

Full access
Shixuan Zhang and Zhaoxia Pu

understand changes in TC intensity and structure, and also to improve our ability to forecast TC intensity, recently, major field campaigns, including the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division (HRD) Intensity Forecast Experiments (IFEX; Rogers et al. 2006 , 2013 ), the National Aeronautics and Space Administration (NASA) Genesis and Rapid Intensification Processes (GRIP) field program ( Braun et al. 2013 ), and the National Science Foundation (NSF) Pre

Open access
Nannan Qin and Da-Lin Zhang

questions in this study by conducting a series of cloud-permitting simulations with the Weather Research and Forecasting (WRF) Model. It should be pointed out that the abovementioned poor predictability of the RI and extraordinary intensity of Patricia has been of typical concern for many tropical cyclones (TCs) ( Tallapragada and Kieu 2014 ), despite significant improvements in hurricane models and rapid progress in predicting hurricane tracks during the recent decades ( Rappaport et al. 2009 ). In

Full access
Russell L. Elsberry, Eric A. Hendricks, Christopher S. Velden, Michael M. Bell, Melinda Peng, Eleanor Casas, and Qingyun Zhao

wind forecast are utilized at 15-min intervals for the 6-h period when special TCI-15 in situ datasets were available for validation ( section 2d ). It will be demonstrated in section 2e that the vortex structure in this dynamic initialization closely resembles the observed vortex tilt analyzed from a set of High-Definition Sounding System (HDSS) soundings deployed at a spacing of 4.5 km during an aircraft center overpass of Joaquin. This dynamic initialization analysis is then utilized in

Full access
Eric A. Hendricks, Russell L. Elsberry, Christopher S. Velden, Adam C. Jorgensen, Mary S. Jordan, and Robert L. Creasey

Scheme (SHIPS; DeMaria et al. 2005 ) intensity forecasts from 0000 UTC 4 October to 0000 UTC 5 October ( Fig. 1 ) underestimate the rapid weakening during the early forecast intervals. While these SHIPS intensity forecasts then somewhat coincidently had smaller errors during the subsequent constant intensity period, these SHIPS forecasts then indicate rapid weakening to 20 kt when the verifying intensities continued to be greater than 60 kt due to the 30-h period of constant intensity of Joaquin

Full access
Robert L. Creasey and Russell L. Elsberry

vortex tilt and the radial and tangential wind structure. It will be productive to compare the vortex tilt (if any) in the initial conditions and forecasts of numerical models of the TCI-15 tropical cyclones. It may be challenging to incorporate these high temporal and spatial resolution HDSS observations in the numerical models. Perhaps our technique of creating layer-average wind direction and speed from overlapping 1-km layers may be useful for initializing those computer models that also

Full access