Search Results

You are looking at 1 - 7 of 7 items for :

  • Infrared radiation x
  • All content x
Clear All
William H. Hunt, David M. Winker, Mark A. Vaughan, Kathleen A. Powell, Patricia L. Lucker, and Carl Weimer

1. Introduction This paper describes the design and performance of the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP), a three-channel elastic backscatter lidar that is the prime payload instrument on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation ( CALIPSO ) satellite. It provides background material for a collection of CALIOP algorithm papers that are to be published in the Journal of Atmospheric and Oceanic Technology ( Winker et al. 2009 ). CALIPSO was

Full access
Mark A. Vaughan, Kathleen A. Powell, David M. Winker, Chris A. Hostetler, Ralph E. Kuehn, William H. Hunt, Brian J. Getzewich, Stuart A. Young, Zhaoyan Liu, and Matthew J. McGill

1. Introduction On 28 April 2006, eight years of close collaboration between the National Aeronautics and Space Administration (NASA) and the Centre National d’Etudes Spatiales (CNES) came to fruition with the launch of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission from Vandenberg Air Force Base in California ( Winker et al. 2007 ). Launched simultaneously with the Cloudsat satellite aboard a single Delta-II rocket, CALIPSO is now an integral part of

Full access
Yongxiang Hu, David Winker, Mark Vaughan, Bing Lin, Ali Omar, Charles Trepte, David Flittner, Ping Yang, Shaima L. Nasiri, Bryan Baum, Robert Holz, Wenbo Sun, Zhaoyan Liu, Zhien Wang, Stuart Young, Knut Stamnes, Jianping Huang, and Ralph Kuehn

more radiation than water clouds when multiple scattering predominates. Furthermore, the brightness temperatures corresponding to three IR window channels centered at 8.5, 11, and 12 μ m are also often used for discriminating cloud thermodynamic phase (e.g., Baum et al. 2000 ). Lidar-based cloud phase discrimination differs significantly from passive remote sensing. On the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) space-based platform, there are three coaligned

Full access
David M. Winker, Mark A. Vaughan, Ali Omar, Yongxiang Hu, Kathleen A. Powell, Zhaoyan Liu, William H. Hunt, and Stuart A. Young

1. Introduction Aerosols and clouds have important impacts on the earth’s climate through their effects on the radiation budget and the role they play in the water cycle. Clouds reflect sunlight back to space and trap outgoing thermal radiation emitted by the earth’s surface, modulating the radiative balance of the earth–atmosphere system. The net effect of these competing cooling and warming effects depends on the altitude of the cloud layers and their multilayer structures. Aerosols also

Full access
Kathleen A. Powell, Chris A. Hostetler, Mark A. Vaughan, Kam-Pui Lee, Charles R. Trepte, Raymond R. Rogers, David M. Winker, Zhaoyan Liu, Ralph E. Kuehn, William H. Hunt, and Stuart A. Young

1. Introduction The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission is an international Earth observing platform constructed and operated jointly by the United States and France ( Winker et al. 2007 ). Since its launch on 28 April 2006, CALIPSO has been making nearly continuous measurements of clouds and aerosols in the earth’s atmosphere. Uncertainties in the roles played by clouds and aerosols in the earth’s radiation budget limit our understanding of the

Full access
Ali H. Omar, David M. Winker, Mark A. Vaughan, Yongxiang Hu, Charles R. Trepte, Richard A. Ferrare, Kam-Pui Lee, Chris A. Hostetler, Chieko Kittaka, Raymond R. Rogers, Ralph E. Kuehn, and Zhaoyan Liu

, droplet size, and cloud longevity [i.e., the so-called indirect effects of aerosols ( Twomey 1977 )]. The deployment of satellite-based active [e.g., Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Geoscience Laser Altimeter System (GLAS)] and passive instruments [e.g., Multiangle Imaging SpectroRadiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS), Ozone Monitoring Instrument (OMI), and Polarization and Directionality of the Earth’s Reflectance (POLDER

Full access
Zhaoyan Liu, Mark Vaughan, David Winker, Chieko Kittaka, Brian Getzewich, Ralph Kuehn, Ali Omar, Kathleen Powell, Charles Trepte, and Chris Hostetler

1. Introduction The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations ( CALIPSO ) satellite, was launched in April 2006 ( Winker et al. 2007 ), in formation with the CloudSat satellite, as part of the A-Train constellation of satellites ( Stephens et al. 2002 ). The main objectives of the CALIPSO mission are to provide global measurements of cloud and aerosol spatial distributions and optical properties

Full access