Search Results

You are looking at 1 - 3 of 3 items for :

  • Global Precipitation Measurement (GPM): Science and Applications x
  • Bulletin of the American Meteorological Society x
  • All content x
Clear All
Gail Skofronick-Jackson, Walter A. Petersen, Wesley Berg, Chris Kidd, Erich F. Stocker, Dalia B. Kirschbaum, Ramesh Kakar, Scott A. Braun, George J. Huffman, Toshio Iguchi, Pierre E. Kirstetter, Christian Kummerow, Robert Meneghini, Riko Oki, William S. Olson, Yukari N. Takayabu, Kinji Furukawa, and Thomas Wilheit

precipitation is lower than the other algorithms while there are interesting differences among the diverse approaches over land. Land surfaces tend to complicate the retrieval process and the various algorithms use different approaches to mitigate surface (emissivity and clutter) issues. Fig . 5. Zonal precipitation averages (mm day −1 ) for the full annual cycle during 2015. The five estimates are GPM DPR (dual-frequency radar; red), GPM GPROF (GMI passive radiometer; blue), GPM Ku band (single

Full access
Dalia B. Kirschbaum, George J. Huffman, Robert F. Adler, Scott Braun, Kevin Garrett, Erin Jones, Amy McNally, Gail Skofronick-Jackson, Erich Stocker, Huan Wu, and Benjamin F. Zaitchik

). This system is also in the process of testing IMERG precipitation estimates. GFMS couples the Variable Infiltration Capacity (VIC) land surface model ( Liang et al. 1994 ) and the Dominant River Tracing Routing (DRTR) model to form the Dominant River routing Integrated with VIC Environment (DRIVE) modeling system. To establish percentile thresholds for flood detection within the GFMS system, the DRIVE model was run retrospectively for 15 years using the TMPA record to provide a history of water

Full access
Robert A. Houze Jr., Lynn A. McMurdie, Walter A. Petersen, Mathew R. Schwaller, William Baccus, Jessica D. Lundquist, Clifford F. Mass, Bart Nijssen, Steven A. Rutledge, David R. Hudak, Simone Tanelli, Gerald G. Mace, Michael R. Poellot, Dennis P. Lettenmaier, Joseph P. Zagrodnik, Angela K. Rowe, Jennifer C. DeHart, Luke E. Madaus, Hannah C. Barnes, and V. Chandrasekar

understand orographic modification of frontal precipitation processes but also to satisfy the need for further development and refinement of algorithms used to convert GPM’s satellite measurements to precipitation amounts in midlatitudes. The algorithms applied to TRMM satellite data over a nearly 17-yr period have been very successful for rain measurement and characterizing tropical convection ( Simpson 1988 ; Simpson et al. 1996 ; Kummerow et al. 1998 ; Zipser et al. 2006 ; Huffman et al. 2007

Open access