Search Results

You are looking at 1 - 3 of 3 items for :

  • Lidar observations x
  • Global Precipitation Measurement (GPM): Science and Applications x
  • All content x
Clear All
Robert A. Houze Jr., Lynn A. McMurdie, Walter A. Petersen, Mathew R. Schwaller, William Baccus, Jessica D. Lundquist, Clifford F. Mass, Bart Nijssen, Steven A. Rutledge, David R. Hudak, Simone Tanelli, Gerald G. Mace, Michael R. Poellot, Dennis P. Lettenmaier, Joseph P. Zagrodnik, Angela K. Rowe, Jennifer C. DeHart, Luke E. Madaus, Hannah C. Barnes, and V. Chandrasekar

performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with National Aeronautics and Space Administration. Airborne lidar imagery was obtained by the NASA Jet Propulsion Laboratory Airborne Snow Observatory, funded by NASA’s Terrestrial Hydrology Program. We especially thank Vaisala Inc., who took quick action to replace a stolen radiosonde unit just prior to the start of OLYMPEX. REFERENCES Chapman , D. , and K. A. Browning , 1997 : Radar observations of

Open access
Paloma Borque, Kirstin J. Harnos, Stephen W. Nesbitt, and Greg M. McFarquhar

. (2010) for observations analyzed in a similar region to where GCPEx took place [Alliance Icing Research Study (AIRS) in Toronto, Ontario, Canada, and the Canadian CloudSat / Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations ( CALIPSO ) Validation Programme (C3VP) near Barrie]. Figure 2 shows PDFs of D m , σ m , and μ derived from the in situ observations for all of the flights that took place during GCPEx. The properties have different distributions depending on temperature

Full access
Kamil Mroz, Alessandro Battaglia, Timothy J. Lang, Simone Tanelli, and Gian Franco Sacco

Blankenship (2012) , and Ortega et al. (2016) . TRMM observations have already shed light on where the most intense thunderstorms occur and what their microwave radiometer and Ku-band radar footprints are ( Zipser et al. 2006 ). Because of the high single-scattering albedo of ice particles, passive microwave radiometers feature large brightness temperature depressions corresponding to large amounts of ice ( Cecil 2011 ; Cecil and Blankenship 2012 ). The most extreme storm in the TRMM dataset was

Open access