Search Results

You are looking at 1 - 5 of 5 items for :

  • Operational forecasting x
  • Multi-Scale Dynamics of Gravity Waves (MS-GWaves) x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All
Mozhgan Amiramjadi, Ali R. Mohebalhojeh, Mohammad Mirzaei, Christoph Zülicke, and Riwal Plougonven

European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS), for nonorographic gravity waves, the amplitude at source level is set to a globally uniform value and adjusted by a prescribed relation for latitude and resolution (see section 5.3 in ECMWF 2018 ). This is a gross simplification of spatial variability and the complete neglect of temporal variability in the wave emission process. Following earlier work by Zülicke and Peters (2008) , a new approach to

Restricted access
Andreas Dörnbrack, Sonja Gisinger, Michael C. Pitts, Lamont R. Poole, and Marion Maturilli

reactions ( Teitelbaum and Sadourny 1998 ; Carslaw et al. 1998 ). Simulation of mesoscale mountain waves especially posed a challenge, and special methods such as linear wave prediction models and mesoscale forecast models were used in the past to predict their local formation (e.g., Dörnbrack et al. 1998 ; Eckermann et al. 2006 ). In this day and age, global operational NWP models use spatial resolutions, which hardly could be attained by limited-area models several years ago. For example, the

Full access
Sonja Gisinger, Andreas Dörnbrack, Vivien Matthias, James D. Doyle, Stephen D. Eckermann, Benedikt Ehard, Lars Hoffmann, Bernd Kaifler, Christopher G. Kruse, and Markus Rapp

. Data sources Operational analyses of the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) are used to provide meteorological data to characterize the atmospheric situation. The 6-hourly operational analysis and hourly forecast fields of the IFS cycle 40r1 have a horizontal resolution on the reduced linear Gaussian grid of about 16 km (T L 1279) and 137 vertical model levels (L137) from the ground to ~80 km (0.01 hPa) with layer thicknesses gradually

Full access
Benedikt Ehard, Peggy Achtert, Andreas Dörnbrack, Sonja Gisinger, Jörg Gumbel, Mikhail Khaplanov, Markus Rapp, and Johannes Wagner

altitude range, the lidar observations are complemented with temperatures simulated numerically by the Advanced Research version of the Weather Research and Forecasting (WRF) Model (ARW; Skamarock and Klemp 2008 ). Our goal is to determine the wave characteristics from the lower troposphere to the mesosphere. For this purpose, we combine and analyze the lidar temperature measurements and the validated mesoscale simulation results. Prerequisites of this approach are high-resolution numerical

Full access
Tanja C. Portele, Andreas Dörnbrack, Johannes S. Wagner, Sonja Gisinger, Benedikt Ehard, Pierre-Dominique Pautet, and Markus Rapp

levels, and a model top at 0.01 hPa, with numerical damping starting at 10 hPa ( Jablonowski and Williamson 2011 ). Moreover, mesoscale numerical simulations with the Weather Research and Forecasting (WRF; 1 Skamarock et al. 2008 ; Skamarock and Klemp 2008 ) Model are performed. With the use of Advanced Research WRF version 3.7, atmospheric simulations are generated processing operational ECMWF analyses as initial and boundary conditions. Two nested model domains are centered at 43°S, 169°E over

Full access