Search Results

You are looking at 1 - 1 of 1 items for :

  • Seasonal effects x
  • Bulletin of the American Meteorological Society x
  • LatMix: Studies of Submesoscale Stirring and Mixing x
  • All content x
Clear All
Andrey Y. Shcherbina, Miles A. Sundermeyer, Eric Kunze, Eric D’Asaro, Gualtiero Badin, Daniel Birch, Anne-Marie E. G. Brunner-Suzuki, Jörn Callies, Brandy T. Kuebel Cervantes, Mariona Claret, Brian Concannon, Jeffrey Early, Raffaele Ferrari, Louis Goodman, Ramsey R. Harcourt, Jody M. Klymak, Craig M. Lee, M.-Pascale Lelong, Murray D. Levine, Ren-Chieh Lien, Amala Mahadevan, James C. McWilliams, M. Jeroen Molemaker, Sonaljit Mukherjee, Jonathan D. Nash, Tamay Özgökmen, Stephen D. Pierce, Sanjiv Ramachandran, Roger M. Samelson, Thomas B. Sanford, R. Kipp Shearman, Eric D. Skyllingstad, K. Shafer Smith, Amit Tandon, John R. Taylor, Eugene A. Terray, Leif N. Thomas, and James R. Ledwell

internal-wave field constructed to simulate that of the LatMix 2011 site with results that promise to sort out the effects of shear dispersion, adiabatic dispersion by internal waves alone, and vortical motions induced by diapycnal mixing events (M.-P. Lelong et al. 2015, manuscript in preparation). Among the original LatMix hypotheses, we considered four classes of motions that might dominate submesoscale stirring in the seasonal pycnocline: shear dispersion by internal waves; vortices induced by

Full access