Search Results

You are looking at 1 - 8 of 8 items for :

  • Water budget/balance x
  • Oceanic Flow–Topography Interactions x
  • All content x
Clear All
Andrew L. Stewart, James C. McWilliams, and Aviv Solodoch

section 3 we examine the vorticity budget of gyres in closed basins forced by a single-signed wind stress curl. This allows us to characterize the nonlocal influence of the bottom pressure torque, and conditions under which bottom pressure torques balance the wind stress curl in the vorticity budget. In section 4 we perform a series of perturbation experiments to investigate the establishment of bottom pressure torque by increasingly pronounced topography, and to make an explicit connection to

Restricted access
Shuwen Tan, Larry J. Pratt, Dongliang Yuan, Xiang Li, Zheng Wang, Yao Li, Corry Corvianawatie, Dewi Surinati, Asep S. Budiman, and Ahmad Bayhaqi

entrainment. The downstream mixing and entrainment transport have not been quantified before. To maintain a steady-state balance of volume and heat budgets in the deep Banda Sea, the deep overflow entering the Banda Sea must be lifted up through mixing to depths shallower than those of the sills of the exit straits of the Indonesian Seas. Direct mixing measurements and numerical modeling have suggested that mixing in the Indonesian Seas is highly variable, with enhanced tide-induced diapycnal mixing at

Restricted access
Madeleine M. Hamann, Matthew H. Alford, Andrew J. Lucas, Amy F. Waterhouse, and Gunnar Voet

-bottom breaking, the time-averaged vertical profile of dissipation rate ϵ would be enhanced throughout the water column rather than increasing toward the bottom. Given the prevalence of canyons along the continental margins, this vertical distribution of dissipation would alter the distribution of heat and other tracers on global scales ( Melet et al. 2016 ). Furthermore, due to their near-ubiquitous presence, canyons may be responsible disproportionately in the dissipation of global mode-1 internal tides

Restricted access
Frederick T. Mayer and Oliver B. Fringer

as the abyssal hills, the upslope of the next hill inhibits the formation of the downslope windstorm, and the flow instead displays a process called “blocking,” wherein the lowest parcels of water become trapped in the valleys (e.g., Welch et al. 2001 ; Nikurashin and Ferrari 2010 ; Winters 2016 ). In the presence of blocking, some water passes over the hills and generates lee wave energy. In steady state, this overtopping fluid travels along a streamline that is different from the bathymetry

Open access
Jody M. Klymak, Dhruv Balwada, Alberto Naveira Garabato, and Ryan Abernathey

a topographic height h . In this scenario, the stratified response at a given wavenumber k depends on the ratio of the intrinsic frequency to the Coriolis parameter, u o k / f , and the ratio of the obstacle height to depth the flow is able to push the stratified water over the obstacle, Nh / u 0 . For relatively small lateral scale topography, u o k / f > 1, radiating internal lee waves are possible. If it is also the case that Nh / u 0 ≪ 1 then linear theory applies, and the drag and

Open access
Jody M. Klymak

0 /∂ y < 0, and reaches steady state when the bottom Ekman layer transport (to the north) matches the surface Ekman transport (to the south). Here, we briefly review how that forcing manifests itself in the momentum and energy balances, partly because the relationship between turbulent dissipation and form drag is conceptually a bit subtle, and some communities prefer to think in terms of one or the other. a. Momentum budget We omit the upper Ekman layer from our simulation, supply the surface

Full access
Gunnar Voet, Matthew H. Alford, Jennifer A. MacKinnon, and Jonathan D. Nash

1. Introduction Oceanic internal lee waves and their associated breaking and energy dissipation are thought to play a considerable role in the energy and momentum budgets of the mean and mesoscale ocean circulation. Numerical model studies show that turbulent mixing generated by breaking lee waves, in addition to internal tides and near-inertial waves, are an important driver of the global overturning circulation and may account for up to one-third of the internal wave-driven water mass

Free access
Eric Kunze and Ren-Chieh Lien

appears to account for less than 25% ( Arbic and Flierl 2004 ; Sen et al. 2008 ; Arbic et al. 2009 ), though form drag associated with topographic blocking may be larger ( Klymak 2018 ); (ii) interior loss of balance to spontaneous and stimulated internal gravity wave generation ( Polzin 2010 ; Plougonven and Zhang 2014 ; Shakespeare and Taylor 2013 , 2014 , 2015 ; Shakespeare 2019 ), which appears to be an even smaller fraction ( Nagai et al. 2015 ), though this depends on the waves being

Full access