Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Adam A. Scaife x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Adam A. Scaife
,
Carlo Buontempo
,
Mark Ringer
,
Mike Sanderson
,
Chris Gordon
, and
John F. B. Mitchell

Abstract

No Abstract available.

Full access
Edwin P. Gerber
,
Amy Butler
,
Natalia Calvo
,
Andrew Charlton-Perez
,
Marco Giorgetta
,
Elisa Manzini
,
Judith Perlwitz
,
Lorenzo M. Polvani
,
Fabrizio Sassi
,
Adam A. Scaife
,
Tiffany A. Shaw
,
Seok-Woo Son
, and
Shingo Watanabe

Advances in weather and climate research have demonstrated the role of the stratosphere in the Earth system across a wide range of temporal and spatial scales. Stratospheric ozone loss has been identified as a key driver of Southern Hemisphere tropospheric circulation trends, affecting ocean currents and carbon uptake, sea ice, and possibly even the Antarctic ice sheets. Stratospheric variability has also been shown to affect short-term and seasonal forecasts, connecting the tropics and midlatitudes and guiding storm-track dynamics. The two-way interactions between the stratosphere and the Earth system have motivated the World Climate Research Programme's (WCRP) Stratospheric Processes and their Role in Climate's (SPARC) activity on Modelling the Dynamics and Variability of the Stratosphere-Troposphere System (DynVar) to investigate the impact of stratospheric dynamics and variability on climate. This assessment will be made possible by two new multimodel datasets. First, roughly 10 models with a well-resolved stratosphere are participating in the Coupled Model Intercomparison Project phase 5 (CMIP5), providing the first multimodel ensemble of climate simulations coupled from the stratopause to the sea floor. Second, the Stratosphere Resolving Historical Forecast Project (Strat-HFP) of WCRP's Climate Variability and Predictability (CLIVAR) program is forming a multimodel set of seasonal hind-casts with stratosphere-resolving models, revealing the impact of both stratospheric initial conditions and dynamics on intraseasonal prediction. The CMIP5 and Strat-HFP model datasets will offer an unprecedented opportunity to understand the role of the stratosphere in the natural and forced variability of the Earth system and to determine whether incorporating knowledge of the middle atmosphere improves seasonal forecasts and climate projections.

Full access
Antje Weisheimer
,
Laura H. Baker
,
Jochen Bröcker
,
Chaim I. Garfinkel
,
Steven C. Hardiman
,
Dan L.R. Hodson
,
Tim N. Palmer
,
Jon I. Robson
,
Adam A. Scaife
,
James A. Screen
,
Theodore G. Shepherd
,
Doug M. Smith
, and
Rowan T. Sutton
Open access
Eun-Pa Lim
,
Harry H. Hendon
,
Amy H. Butler
,
David W. J. Thompson
,
Zachary D. Lawrence
,
Adam A. Scaife
,
Theodore G. Shepherd
,
Inna Polichtchouk
,
Hisashi Nakamura
,
Chiaki Kobayashi
,
Ruth Comer
,
Lawrence Coy
,
Andrew Dowdy
,
Rene D. Garreaud
,
Paul A. Newman
, and
Guomin Wang

Abstract

This study offers an overview of the low-frequency (i.e., monthly to seasonal) evolution, dynamics, predictability, and surface impacts of a rare Southern Hemisphere (SH) stratospheric warming that occurred in austral spring 2019. Between late August and mid-September 2019, the stratospheric circumpolar westerly jet weakened rapidly, and Antarctic stratospheric temperatures rose dramatically. The deceleration of the vortex at 10 hPa was as drastic as that of the first-ever-observed major sudden stratospheric warming in the SH during 2002, while the mean Antarctic warming over the course of spring 2019 broke the previous record of 2002 by ∼50% in the midstratosphere. This event was preceded by a poleward shift of the SH polar night jet in the uppermost stratosphere in early winter, which was then followed by record-strong planetary wave-1 activity propagating upward from the troposphere in August that acted to dramatically weaken the polar vortex throughout the depth of the stratosphere. The weakened vortex winds and elevated temperatures moved downward to the surface from mid-October to December, promoting a record strong swing of the southern annular mode (SAM) to its negative phase. This record-negative SAM appeared to be a primary driver of the extreme hot and dry conditions over subtropical eastern Australia that accompanied the severe wildfires that occurred in late spring 2019. State-of-the-art dynamical seasonal forecast systems skillfully predicted the significant vortex weakening of spring 2019 and subsequent development of negative SAM from as early as late July.

Full access
Adam A. Scaife
,
Elizabeth Good
,
Ying Sun
,
Zhongwei Yan
,
Nick Dunstone
,
Hong-Li Ren
,
Chaofan Li
,
Riyu Lu
,
Peili Wu
,
Zongjian Ke
,
Zhuguo Ma
,
Kalli Furtado
,
Tongwen Wu
,
Tianjun Zhou
,
Tyrone Dunbar
,
Chris Hewitt
,
Nicola Golding
,
Peiqun Zhang
,
Rob Allan
,
Kirstine Dale
,
Fraser C. Lott
,
Peter A. Stott
,
Sean Milton
,
Lianchun Song
, and
Stephen Belcher

Abstract

We present results from the first 6 years of this major U.K. government funded project to accelerate and enhance collaborative research and development in climate science, forge a strong strategic partnership between U.K. and Chinese climate scientists, and demonstrate new climate services developed in partnership. The development of novel climate services is described in the context of new modeling and prediction capability, enhanced understanding of climate variability and change, and improved observational datasets. Selected highlights are presented from over 300 peer reviewed studies generated jointly by U.K. and Chinese scientists within this project. We illustrate new observational datasets for Asia and enhanced capability through training workshops on the attribution of climate extremes to anthropogenic forcing. Joint studies on the dynamics and predictability of climate have identified new opportunities for skillful predictions of important aspects of Chinese climate such as East Asian summer monsoon rainfall. In addition, the development of improved modeling capability has led to profound changes in model computer codes and climate model configurations, with demonstrable increases in performance. We also describe the successes and difficulties in bridging the gap between fundamental climate research and the development of novel real-time climate services. Participation of dozens of institutes through subprojects in this program, which is governed by the Met Office Hadley Centre, the China Meteorological Administration, and the Institute of Atmospheric Physics, is creating an important legacy for future collaboration in climate science and services.

Full access
Adrian M. Tompkins
,
María Inés Ortiz De Zárate
,
Ramiro I. Saurral
,
Carolina Vera
,
Celeste Saulo
,
William J. Merryfield
,
Michael Sigmond
,
Woo-Sung Lee
,
Johanna Baehr
,
Alain Braun
,
Amy Butler
,
Michel Déqué
,
Francisco J. Doblas-Reyes
,
Margaret Gordon
,
Adam A. Scaife
,
Yukiko Imada
,
Masayoshi Ishii
,
Tomoaki Ose
,
Ben Kirtman
,
Arun Kumar
,
Wolfgang A. Müller
,
Anna Pirani
,
Tim Stockdale
,
Michel Rixen
, and
Tamaki Yasuda
Open access