Search Results
Abstract
The dynamical consequences of constraining a numerical model with sea surface height data have been investigated. The model used for this study is a quasigeostrophic model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. The assimilations of the surface data is thus equivalent to the prescription of a surface pressure boundary condition. The authors analyzed the mechanisms of the model adjustment and the characteristics of the resultant equilibrium state when the surface data are assimilated. Since the surface data are the superposition of a mean component and an eddy component, in order to understand the relative role of these two components in determining the characteristics of the final equilibrium state, two different experiments have been considered: in the first experiment only the climatological mean field is assimilated, while in the second experiment the total surface streamfunction field (mean plus eddies) has been used. It is shown that the model behavior in the presence of the surface data constraint can be conveniently described in terms of baroclinic Fofonoff modes. The prescribed mean component of the surface data acts as a “surface topography” in this problem. Its presence determines a distortion of the geostrophic contours in the subsurface layers, thus constraining the mean circulation in those layers. The intensity of the mean flow is determined by the inflow/outflow conditions at the open boundaries, as well as by eddy forcing and dissipation.
Abstract
The dynamical consequences of constraining a numerical model with sea surface height data have been investigated. The model used for this study is a quasigeostrophic model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. The assimilations of the surface data is thus equivalent to the prescription of a surface pressure boundary condition. The authors analyzed the mechanisms of the model adjustment and the characteristics of the resultant equilibrium state when the surface data are assimilated. Since the surface data are the superposition of a mean component and an eddy component, in order to understand the relative role of these two components in determining the characteristics of the final equilibrium state, two different experiments have been considered: in the first experiment only the climatological mean field is assimilated, while in the second experiment the total surface streamfunction field (mean plus eddies) has been used. It is shown that the model behavior in the presence of the surface data constraint can be conveniently described in terms of baroclinic Fofonoff modes. The prescribed mean component of the surface data acts as a “surface topography” in this problem. Its presence determines a distortion of the geostrophic contours in the subsurface layers, thus constraining the mean circulation in those layers. The intensity of the mean flow is determined by the inflow/outflow conditions at the open boundaries, as well as by eddy forcing and dissipation.
Abstract
The improvement in the climatological behavior of a numerical model as a consequence of the assimilation of surface data is investigated. The model used for this study is a quasigeostrophic (QG) model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height that have been obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations.
Comparisons of the assimilation results with available in situ observations show a significant improvement in the degree of realism of the climatological model behavior, with respect to the model in which no data are assimilated. The remaining discrepancies in the model mean circulation seem to be mainly associated with deficiencies in the mean component of the surface data that are assimilated. On the other hand, the possibility of building into the model more realistic eddy characteristics through the assimilation of the surface eddy field proves very successful in driving components of the mean model circulation that are in relatively good agreement with the available observations. Comparisons with current meter time series during a time period partially overlapping the Geosat mission show that the model is able to “correctly” extrapolate the instantaneous surface eddy signals to depths of approximately 1500 m. The correlation coefficient between current meter and model time series varies from values close to 0.7 in the top 1500 m to values as low as 0.1–0.2 in the deep ocean.
Abstract
The improvement in the climatological behavior of a numerical model as a consequence of the assimilation of surface data is investigated. The model used for this study is a quasigeostrophic (QG) model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height that have been obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations.
Comparisons of the assimilation results with available in situ observations show a significant improvement in the degree of realism of the climatological model behavior, with respect to the model in which no data are assimilated. The remaining discrepancies in the model mean circulation seem to be mainly associated with deficiencies in the mean component of the surface data that are assimilated. On the other hand, the possibility of building into the model more realistic eddy characteristics through the assimilation of the surface eddy field proves very successful in driving components of the mean model circulation that are in relatively good agreement with the available observations. Comparisons with current meter time series during a time period partially overlapping the Geosat mission show that the model is able to “correctly” extrapolate the instantaneous surface eddy signals to depths of approximately 1500 m. The correlation coefficient between current meter and model time series varies from values close to 0.7 in the top 1500 m to values as low as 0.1–0.2 in the deep ocean.
Abstract
Observations indicate the existence of two bands of maximum thermocline depth variability centered at ∼10°S and 13°N in the tropical Pacific Ocean. The analysis of a numerical integration performed with the National Center for Atmospheric Research ocean general circulation model (OGCM) forced with observed fluxes of momentum, heat, and freshwater over the period from 1958 to 1997 reveals that the tropical centers of thermocline variability at 10°S and 13°N are associated with first-mode baroclinic Rossby waves forced by anomalous Ekman pumping. In this study the factors that may be responsible for the Rossby wave maxima at 10°S and 13°N, including the amplitude and spatial coherency of the forcing at those latitudes, are systematically investigated. A simple Rossby wave model is used to interpret the OGCM variability and to help to discriminate between the different factors that may produce the tropical maxima. These results indicate that the dominant factor in producing the maximum variability at 10°S and 13°N is the zonal coherency of the Ekman pumping, a characteristic of the forcing that becomes increasingly more pronounced at low frequencies, maximizing at timescales in the decadal range. Local maxima in the amplitude of the forcing, while not explaining the origin of the centers of variability at 10°S and 13°N, appear to affect the sharpness of the variability maxima at low frequencies. Although the Rossby wave model gives an excellent fit to the OGCM, some discrepancies exist: the amplitude of the thermocline variance is generally underestimated by the simple model, and the variability along 13°N is westward intensified in the wave model but reaches a maximum in the central part of the basin in the OGCM. Short Rossby waves excited by small-scale Ekman pumping features, or the presence of higher-order Rossby wave modes may be responsible for the differences in the zonal variance distribution along 13°N.
Abstract
Observations indicate the existence of two bands of maximum thermocline depth variability centered at ∼10°S and 13°N in the tropical Pacific Ocean. The analysis of a numerical integration performed with the National Center for Atmospheric Research ocean general circulation model (OGCM) forced with observed fluxes of momentum, heat, and freshwater over the period from 1958 to 1997 reveals that the tropical centers of thermocline variability at 10°S and 13°N are associated with first-mode baroclinic Rossby waves forced by anomalous Ekman pumping. In this study the factors that may be responsible for the Rossby wave maxima at 10°S and 13°N, including the amplitude and spatial coherency of the forcing at those latitudes, are systematically investigated. A simple Rossby wave model is used to interpret the OGCM variability and to help to discriminate between the different factors that may produce the tropical maxima. These results indicate that the dominant factor in producing the maximum variability at 10°S and 13°N is the zonal coherency of the Ekman pumping, a characteristic of the forcing that becomes increasingly more pronounced at low frequencies, maximizing at timescales in the decadal range. Local maxima in the amplitude of the forcing, while not explaining the origin of the centers of variability at 10°S and 13°N, appear to affect the sharpness of the variability maxima at low frequencies. Although the Rossby wave model gives an excellent fit to the OGCM, some discrepancies exist: the amplitude of the thermocline variance is generally underestimated by the simple model, and the variability along 13°N is westward intensified in the wave model but reaches a maximum in the central part of the basin in the OGCM. Short Rossby waves excited by small-scale Ekman pumping features, or the presence of higher-order Rossby wave modes may be responsible for the differences in the zonal variance distribution along 13°N.
Abstract
Observations indicate the existence of two bands of maximum thermocline depth variability centered at ∼10°S and 13°N in the tropical Pacific Ocean. The analysis of a numerical integration performed with the National Center for Atmospheric Research ocean general circulation model (OGCM) forced with observed fluxes of momentum, heat, and freshwater over the period from 1958 to 1997 reveals that the tropical centers of thermocline variability at 10°S and 13°N are associated with first-mode baroclinic Rossby waves forced by anomalous Ekman pumping. In this study the factors that may be responsible for the Rossby wave maxima at 10°S and 13°N, including the amplitude and spatial coherency of the forcing at those latitudes, are systematically investigated. A simple Rossby wave model is used to interpret the OGCM variability and to help to discriminate between the different factors that may produce the tropical maxima. These results indicate that the dominant factor in producing the maximum variability at 10°S and 13°N is the zonal coherency of the Ekman pumping, a characteristic of the forcing that becomes increasingly more pronounced at low frequencies, maximizing at timescales in the decadal range. Local maxima in the amplitude of the forcing, while not explaining the origin of the centers of variability at 10°S and 13°N, appear to affect the sharpness of the variability maxima at low frequencies. Although the Rossby wave model gives an excellent fit to the OGCM, some discrepancies exist: the amplitude of the thermocline variance is generally underestimated by the simple model, and the variability along 13°N is westward intensified in the wave model but reaches a maximum in the central part of the basin in the OGCM. Short Rossby waves excited by small-scale Ekman pumping features, or the presence of higher-order Rossby wave modes may be responsible for the differences in the zonal variance distribution along 13°N.
Abstract
Observations indicate the existence of two bands of maximum thermocline depth variability centered at ∼10°S and 13°N in the tropical Pacific Ocean. The analysis of a numerical integration performed with the National Center for Atmospheric Research ocean general circulation model (OGCM) forced with observed fluxes of momentum, heat, and freshwater over the period from 1958 to 1997 reveals that the tropical centers of thermocline variability at 10°S and 13°N are associated with first-mode baroclinic Rossby waves forced by anomalous Ekman pumping. In this study the factors that may be responsible for the Rossby wave maxima at 10°S and 13°N, including the amplitude and spatial coherency of the forcing at those latitudes, are systematically investigated. A simple Rossby wave model is used to interpret the OGCM variability and to help to discriminate between the different factors that may produce the tropical maxima. These results indicate that the dominant factor in producing the maximum variability at 10°S and 13°N is the zonal coherency of the Ekman pumping, a characteristic of the forcing that becomes increasingly more pronounced at low frequencies, maximizing at timescales in the decadal range. Local maxima in the amplitude of the forcing, while not explaining the origin of the centers of variability at 10°S and 13°N, appear to affect the sharpness of the variability maxima at low frequencies. Although the Rossby wave model gives an excellent fit to the OGCM, some discrepancies exist: the amplitude of the thermocline variance is generally underestimated by the simple model, and the variability along 13°N is westward intensified in the wave model but reaches a maximum in the central part of the basin in the OGCM. Short Rossby waves excited by small-scale Ekman pumping features, or the presence of higher-order Rossby wave modes may be responsible for the differences in the zonal variance distribution along 13°N.
Abstract
The output from an ocean general circulation model (OGCM) driven by observed surface forcing is used in conjunction with simpler dynamical models to examine the physical mechanisms responsible for interannual to interdecadal pycnocline variability in the northeast Pacific Ocean during 1958–97, a period that includes the 1976–77 climate shift. After 1977 the pycnocline deepened in a broad band along the coast and shoaled in the central part of the Gulf of Alaska. The changes in pycnocline depth diagnosed from the model are in agreement with the pycnocline depth changes observed at two ocean stations in different areas of the Gulf of Alaska. A simple Ekman pumping model with linear damping explains a large fraction of pycnocline variability in the OGCM. The fit of the simple model to the OGCM is maximized in the central part of the Gulf of Alaska, where the pycnocline variability produced by the simple model can account for ∼70%–90% of the pycnocline depth variance in the OGCM. Evidence of westward-propagating Rossby waves is found in the OGCM, but they are not the dominant signal. On the contrary, large-scale pycnocline depth anomalies have primarily a standing character, thus explaining the success of the local Ekman pumping model. The agreement between the Ekman pumping model and OGCM deteriorates in a large band along the coast, where propagating disturbances within the pycnocline, due to either mean flow advection or boundary waves, appear to play an important role in pycnocline variability. Coastal propagation of pycnocline depth anomalies is especially relevant in the western part of the Gulf of Alaska, where local Ekman pumping-induced changes are anticorrelated with the OGCM pycnocline depth variations. The pycnocline depth changes associated with the 1976–77 climate regime shift do not seem to be consistent with Sverdrup dynamics, raising questions about the nature of the adjustment of the Alaska Gyre to low-frequency wind stress variability.
Abstract
The output from an ocean general circulation model (OGCM) driven by observed surface forcing is used in conjunction with simpler dynamical models to examine the physical mechanisms responsible for interannual to interdecadal pycnocline variability in the northeast Pacific Ocean during 1958–97, a period that includes the 1976–77 climate shift. After 1977 the pycnocline deepened in a broad band along the coast and shoaled in the central part of the Gulf of Alaska. The changes in pycnocline depth diagnosed from the model are in agreement with the pycnocline depth changes observed at two ocean stations in different areas of the Gulf of Alaska. A simple Ekman pumping model with linear damping explains a large fraction of pycnocline variability in the OGCM. The fit of the simple model to the OGCM is maximized in the central part of the Gulf of Alaska, where the pycnocline variability produced by the simple model can account for ∼70%–90% of the pycnocline depth variance in the OGCM. Evidence of westward-propagating Rossby waves is found in the OGCM, but they are not the dominant signal. On the contrary, large-scale pycnocline depth anomalies have primarily a standing character, thus explaining the success of the local Ekman pumping model. The agreement between the Ekman pumping model and OGCM deteriorates in a large band along the coast, where propagating disturbances within the pycnocline, due to either mean flow advection or boundary waves, appear to play an important role in pycnocline variability. Coastal propagation of pycnocline depth anomalies is especially relevant in the western part of the Gulf of Alaska, where local Ekman pumping-induced changes are anticorrelated with the OGCM pycnocline depth variations. The pycnocline depth changes associated with the 1976–77 climate regime shift do not seem to be consistent with Sverdrup dynamics, raising questions about the nature of the adjustment of the Alaska Gyre to low-frequency wind stress variability.