Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Bernard Pinty x
- Journal of the Atmospheric Sciences x
- Refine by Access: All Content x
Abstract
This paper discusses the problem of radiation transfer in geophysical media, in particular, within homogeneous plant canopies over terrestrial surfaces. The emphasis is placed on the specificities of this problem when it is addressed with the radiation transfer equation classically used in atmospheric sciences. The discussion takes place in the context of remote sensing applications, where the main constraint is to be able to invert the photon transport model against observations to retrieve the properties of the observed media. To facilitate the solution of the radiative coupling between the vegetation and atmospheric layers, the same formal approach is used in both media, and the extinction and differential scattering coefficients are specified in a similar way. The accurate description of the radiation transfer within a vegetation layer is complicated by the fact that both of these coefficients depend on the position of the external sources of radiation, and by the lack of precise knowledge about the radiative boundary conditions at the top and bottom of this layer. Effective solutions to the radiation transfer problem in plant canopies require the introduction of specific hypotheses, for instance, in the treatment of the multiple scattering contribution.
Abstract
This paper discusses the problem of radiation transfer in geophysical media, in particular, within homogeneous plant canopies over terrestrial surfaces. The emphasis is placed on the specificities of this problem when it is addressed with the radiation transfer equation classically used in atmospheric sciences. The discussion takes place in the context of remote sensing applications, where the main constraint is to be able to invert the photon transport model against observations to retrieve the properties of the observed media. To facilitate the solution of the radiative coupling between the vegetation and atmospheric layers, the same formal approach is used in both media, and the extinction and differential scattering coefficients are specified in a similar way. The accurate description of the radiation transfer within a vegetation layer is complicated by the fact that both of these coefficients depend on the position of the external sources of radiation, and by the lack of precise knowledge about the radiative boundary conditions at the top and bottom of this layer. Effective solutions to the radiation transfer problem in plant canopies require the introduction of specific hypotheses, for instance, in the treatment of the multiple scattering contribution.
Abstract
Pressure and temperature fields within a West African squall line, retrieved from dual-Doppler radar data collected during the “COPT 81” (Convection Profonde Tropicale) experiment are presented. The method for derivation of thew results is approximately similar to that proposed by Gal-Chen, based on the anelastic equation of motion.
Comparisons between pressure and temperature fields deduced from radar data at the lowest levels and surface network measurements show good agreement. The inferred thermodynamic structure displays the influence of a low-level frontward flow which is mainly due to a density current of cold air, generated in the stratiform region of the squall line and resulting from a mesoscale downdraft. This frontward flow contributes to initiate and maintain a frontal updraft through both nonhydrostatic pressure perturbation and temperature difference between entering air and colder frontward flow. At higher altitudes, mixing with the environment reduces buoyancy in the frontal updraft, while weaker convective updrafts develop in the inner region.
Comparisons between these results and the kinematic and thermodynamic structures deduced from a previous observation (Le Mone, 1983) display different types of dynamics of organized convective systems.
Abstract
Pressure and temperature fields within a West African squall line, retrieved from dual-Doppler radar data collected during the “COPT 81” (Convection Profonde Tropicale) experiment are presented. The method for derivation of thew results is approximately similar to that proposed by Gal-Chen, based on the anelastic equation of motion.
Comparisons between pressure and temperature fields deduced from radar data at the lowest levels and surface network measurements show good agreement. The inferred thermodynamic structure displays the influence of a low-level frontward flow which is mainly due to a density current of cold air, generated in the stratiform region of the squall line and resulting from a mesoscale downdraft. This frontward flow contributes to initiate and maintain a frontal updraft through both nonhydrostatic pressure perturbation and temperature difference between entering air and colder frontward flow. At higher altitudes, mixing with the environment reduces buoyancy in the frontal updraft, while weaker convective updrafts develop in the inner region.
Comparisons between these results and the kinematic and thermodynamic structures deduced from a previous observation (Le Mone, 1983) display different types of dynamics of organized convective systems.
Abstract
New satellite instruments have been delivering a wealth of information regarding land surface albedo. This basic quantity describes what fraction of solar radiation is reflected from the earth’s surface. However, its concept and measurements have some ambiguity resulting from its dependence on the incidence angles of both the direct and diffuse solar radiation. At any time of day, a surface receives direct radiation in the direction of the sun, and diffuse radiation from the various other directions in which it may have been scattered by air molecules, aerosols, and cloud droplets. This contribution proposes a complete description of the distribution of incident radiation with angles, and the implications in terms of surface albedo are given in a mathematical form, which is suitable for climate models that require evaluating surface albedo many times. The different definitions of observed albedos are explained in terms of the coupling between surface and atmospheric scattering properties. The analytical development in this paper relates the various quantities that are retrieved from orbiting platforms to what is needed by an atmospheric model. It provides a physically simple and practical approach to evaluation of land surface albedo values at any condition of sun illumination irrespective of the current range of surface anisotropic conditions and atmospheric aerosol load. The numerical differences between the various definitions of albedo for a set of typical atmospheric and surface scattering conditions are illustrated through numerical computation.
Abstract
New satellite instruments have been delivering a wealth of information regarding land surface albedo. This basic quantity describes what fraction of solar radiation is reflected from the earth’s surface. However, its concept and measurements have some ambiguity resulting from its dependence on the incidence angles of both the direct and diffuse solar radiation. At any time of day, a surface receives direct radiation in the direction of the sun, and diffuse radiation from the various other directions in which it may have been scattered by air molecules, aerosols, and cloud droplets. This contribution proposes a complete description of the distribution of incident radiation with angles, and the implications in terms of surface albedo are given in a mathematical form, which is suitable for climate models that require evaluating surface albedo many times. The different definitions of observed albedos are explained in terms of the coupling between surface and atmospheric scattering properties. The analytical development in this paper relates the various quantities that are retrieved from orbiting platforms to what is needed by an atmospheric model. It provides a physically simple and practical approach to evaluation of land surface albedo values at any condition of sun illumination irrespective of the current range of surface anisotropic conditions and atmospheric aerosol load. The numerical differences between the various definitions of albedo for a set of typical atmospheric and surface scattering conditions are illustrated through numerical computation.