Search Results

You are looking at 1 - 10 of 25 items for

  • Author or Editor: Bruce D. Cornuelle x
  • Refine by Access: All Content x
Clear All Modify Search
Niklas Schneider
and
Bruce D. Cornuelle

Abstract

The Pacific decadal oscillation (PDO), defined as the leading empirical orthogonal function of North Pacific sea surface temperature anomalies, is a widely used index for decadal variability. It is shown that the PDO can be recovered from a reconstruction of North Pacific sea surface temperature anomalies based on a first-order autoregressive model and forcing by variability of the Aleutian low, El Niño–Southern Oscillation (ENSO), and oceanic zonal advection anomalies in the Kuroshio–Oyashio Extension. The latter results from oceanic Rossby waves that are forced by North Pacific Ekman pumping. The SST response patterns to these processes are not orthogonal, and they determine the spatial characteristics of the PDO. The importance of the different forcing processes is frequency dependent. At interannual time scales, forcing from ENSO and the Aleutian low determines the response in equal parts. At decadal time scales, zonal advection in the Kuroshio–Oyashio Extension, ENSO, and anomalies of the Aleutian low each account for similar amounts of the PDO variance. These results support the hypothesis that the PDO is not a dynamical mode, but arises from the superposition of sea surface temperature fluctuations with different dynamical origins.

Full access
Brian D. Dushaw
,
Peter F. Worcester
,
Bruce D. Cornuelle
, and
Bruce M. Howe

Abstract

The evolution of the heat content in the central North Pacific Ocean during summer 1987 has been measured using acoustic transmissions between transceivers deployed in a triangle approximately 1000 km on a side. The acoustically determined heat contents of the source-receiver sections agree with heat contents computed from CTD and XBT data obtained during May and September 1987. The accuracy of acoustical measurements of range-averaged heat content is comparable to estimates from CTD and XBT data. Transmissions at four-day intervals allow the continuous observation of heat content and show that it varies on time scales of weeks or less. The magnitude of these variations is of the same order as that observed from XBT sections, which are only occasionally available. Ocean–atmosphere heat exchange from bulk formulas accounts for only about half of the observed heat content increase from May through September 1987, indicating that advective effects are important in the region. The excess heat change is calculated to be of order 50–150 W m−2. The advective component of the near-surface heat budget is roughly in phase with the surface flux component.

Full access
Brian D. Dushaw
,
Bruce M. Howe
,
Bruce D. Cornuelle
,
Peter F. Worcester
, and
Douglas S. Luther

Abstract

Travel times of reciprocal 1000-km range acoustic transmissions, determined from the 1987 Reciprocal Tomography Experiment, are used to study barotropic tidal currents and a large-scale, coherent baroclinic tide in the central North Pacific Ocean. The difference in reciprocal travel times determines the tidal currents, while the sum of reciprocal travel times determines the baroclinic tide displacement of isotachs (or equivalently, isotherms). The barotropic tidal current accounts for 90% of the observed differential travel time variance. The measured harmonic constants of the eight major tidal constituents of the barotropic tide and the constants determined from current meter measurements agree well with the empirical–numerical tidal models of Schwiderski and Cartwright et al. The amplitudes and phases of the first-mode baroclinic tide determined from sum travel times agree with those determined from moored thermistors and current meters. The baroclinic tidal signals are consistent with a large-scale, phase-locked internal tide, which apparently has propagated northward over 2000 km from the Hawaiian Ridge. The amplitude, phase, and polarization of the first-mode M2 baroclinic tidal displacement and current are consistent with a northward propagating internal tide. The ratio of baroclinic energy to barotropic energy determined using the range-averaging acoustic transmissions is about 8%, while a ratio of 26% was determined from the point measurements. The large-scale, internal tide energy flux, presumed northward, is estimated to be about 180 W m−1.

Full access
Hajoon Song
,
Ibrahim Hoteit
,
Bruce D. Cornuelle
, and
Aneesh C. Subramanian

Abstract

A new approach is proposed to address the background covariance limitations arising from undersampled ensembles and unaccounted model errors in the ensemble Kalman filter (EnKF). The method enhances the representativeness of the EnKF ensemble by augmenting it with new members chosen adaptively to add missing information that prevents the EnKF from fully fitting the data to the ensemble. The vectors to be added are obtained by back projecting the residuals of the observation misfits from the EnKF analysis step onto the state space. The back projection is done using an optimal interpolation (OI) scheme based on an estimated covariance of the subspace missing from the ensemble. In the experiments reported here, the OI uses a preselected stationary background covariance matrix, as in the hybrid EnKF–three-dimensional variational data assimilation (3DVAR) approach, but the resulting correction is included as a new ensemble member instead of being added to all existing ensemble members.

The adaptive approach is tested with the Lorenz-96 model. The hybrid EnKF–3DVAR is used as a benchmark to evaluate the performance of the adaptive approach. Assimilation experiments suggest that the new adaptive scheme significantly improves the EnKF behavior when it suffers from small size ensembles and neglected model errors. It was further found to be competitive with the hybrid EnKF–3DVAR approach, depending on ensemble size and data coverage.

Full access
Daniel L. Rudnick
,
Ganesh Gopalakrishnan
, and
Bruce D. Cornuelle

Abstract

Circulation in the Gulf of Mexico (GoM) is dominated by the Loop Current (LC) and by Loop Current eddies (LCEs) that form at irregular multimonth intervals by separation from the LC. Comparatively small cyclonic eddies (CEs) are thought to have a controlling influence on the LCE, including its separation from the LC. Because the CEs are so dynamic and short-lived, lasting only a few weeks, they have proved a challenge to observe. This study addresses that challenge using underwater gliders. These gliders’ data and satellite sea surface height (SSH) are used in a four-dimensional variational (4DVAR) assimilation in the Massachusetts Institute of Technology (MIT) general circulation model (MITgcm). The model serves two purposes: first, the model’s estimate of ocean state allows the analysis of four-dimensional fields, and second, the model forecasts are examined to determine the value of glider data. CEs have a Rossby number of about 0.2, implying that the effects of flow curvature, cyclostrophy, to modify the geostrophic momentum balance are slight. The velocity field in CEs is nearly depth independent, while LCEs are more baroclinic, consistent with the CEs origin on the less stratified, dense side of the LCE. CEs are formed from water in the GoM, rather than the Atlantic water that distinguishes the LCE. Model forecasts are improved by glider data, using a quality metric based on satellite SSH, with the best 2-month GoM forecast rivaling the accuracy of a global hindcast.

Full access
Sung Yong Kim
,
Bruce D. Cornuelle
, and
Eric J. Terrill

Abstract

Analysis of coastal surface currents measured off the coast of San Diego for two years suggests an anisotropic and asymmetric response to the wind, probably as a result of bottom/coastline boundary effects, including pressure gradients. In a linear regression, the statistically estimated anisotropic response explains approximately 20% more surface current variance than an isotropic wind–ocean response model. After steady wind forcing for three days, the isotropic surface current response veers 42° ± 2° to the right of the wind regardless of wind direction, whereas the anisotropic analysis suggests that the upcoast (onshore) wind stress generates surface currents with 10° ± 4° (71° ± 3°) to the right of the wind direction. The anisotropic response thus reflects the dominance of alongshore currents in this coastal region. Both analyses yield wind-driven currents with 3%–5% of the wind speed, as expected. In addition, nonlinear isotropic and anisotropic response functions are considered, and the asymmetric current responses to the wind are examined. These results provide a comprehensive statistical model of the wind-driven currents in the coastal region, which has not been well identified in previous field studies, but is qualitatively consistent with descriptions of the current response in coastal ocean models.

Full access
Sung Yong Kim
,
Bruce D. Cornuelle
, and
Eric J. Terrill
Full access
Christopher L. Wolfe
,
Paola Cessi
, and
Bruce D. Cornuelle

Abstract

An intrinsic mode of self-sustained, interannual variability is identified in a coarse-resolution ocean model forced by an annually repeating atmospheric state. The variability has maximum loading in the Indian Ocean, with a significant projection into the South Atlantic Ocean. It is argued that this intrinsic mode is caused by baroclinic instability of the model’s Leeuwin Current, which radiates out to the tropical Indian and South Atlantic Oceans as long Rossby waves at a period of 4 yr. This previously undescribed mode has a remarkably narrowband time series. However, the variability is not synchronized with the annual cycle; the phase of the oscillation varies chaotically on decadal time scales. The presence of this internal mode reduces the predictability of the ocean circulation by obscuring the response to forcing or initial condition perturbations. The signature of this mode can be seen in higher-resolution global ocean models driven by high-frequency atmospheric forcing, but altimeter and assimilation analyses do not show obvious signatures of such a mode, perhaps because of insufficient duration.

Full access
Katherine D. Zaba
,
Daniel L. Rudnick
,
Bruce D. Cornuelle
,
Ganesh Gopalakrishnan
, and
Matthew R. Mazloff

Abstract

A data-constrained state estimate of the southern California Current System (CCS) is presented and compared with withheld California Cooperative Oceanic Fisheries Investigations (CalCOFI) data and assimilated glider data over 2007–17. The objective of this comparison is to assess the ability of the California State Estimate (CASE) to reproduce the key physical features of the CCS mean state, annual cycles, and interannual variability along the three sections of the California Underwater Glider Network (CUGN). The assessment focuses on several oceanic metrics deemed most important for characterizing physical variability in the CCS: 50-m potential temperature, 80-m salinity, and 26 kg m−3 isopycnal depth and salinity. In the time mean, the CASE reproduces large-scale thermohaline and circulation structures, including observed temperature gradients, shoaling isopycnals, and the locations and magnitudes of the equatorward California Current and poleward California Undercurrent. With respect to the annual cycle, the CASE captures the phase and, to a lesser extent, the magnitude of upper-ocean warming and stratification from late summer to early fall and of isopycnal heave during springtime upwelling. The CASE also realistically captures near-surface diapycnal mixing during upwelling season and the semiannual cycle of the California Undercurrent. In terms of interannual variability, the most pronounced signals are the persistent warming and downwelling anomalies of 2014–16 and a positive isopycnal salinity anomaly that peaked with the 2015–16 El Niño.

Full access
Katherine D. Zaba
,
Daniel L. Rudnick
,
Bruce D. Cornuelle
,
Ganesh Gopalakrishnan
, and
Matthew R. Mazloff

Abstract

The data-assimilating California State Estimate (CASE) enables the explicit evaluation of spatiotemporally varying volume and heat budgets in the coastal California Current System (CCS). An analysis of over 10 years of CASE model output (2007–17) diagnoses the physical drivers of the CCS mean state, annual cycles, and the 2014–16 temperature anomalies associated with a marine heat wave and an El Niño event. The largest terms in the mean mixed layer (from−50 to 0 m) volume budgets are upward vertical transport at the coast and offshore-flowing ageostrophic Ekman transport at the surface, the two branches of the coastal upwelling overturning cell. Contributions from onshore geostrophic flow in the Southern California Bight and alongshore geostrophic convergence in the central CCS balance the mean volume budgets. The depth-dependent annual cycle of vertical velocity exhibits the strongest upward velocity between −40- and −30-m depth in April. Interannual volume budgets show that over 50% of the 2013.5–16.5 time period experienced downwelling anomalies, which were balanced predominantly by alongshore transport convergence and, less often, by onshore transport anomalies. Mixed layer temperature anomalies persisted for the entirety of 2014–16, reaching a maximum of +3° in October 2015. The mixed layer heat budget shows that intermittent high air–sea heat flux anomalies and alongshore and vertical heat advection anomalies all contributed to warming during 2014–16. A subsurface (from −210 to −100 m) heat budget reveals that in September 2015 anomalous poleward heat advection into the Southern California Bight by the California Undercurrent caused deeper warming during the 2015/16 El Niño.

Free access