Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: C. E. P. BROOKS x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
C. E. P. Brooks
Full access
P. Joe
,
S. Belair
,
N.B. Bernier
,
V. Bouchet
,
J. R. Brook
,
D. Brunet
,
W. Burrows
,
J.-P. Charland
,
A. Dehghan
,
N. Driedger
,
C. Duhaime
,
G. Evans
,
A.-B. Filion
,
R. Frenette
,
J. de Grandpré
,
I. Gultepe
,
D. Henderson
,
A. Herdt
,
N. Hilker
,
L. Huang
,
E. Hung
,
G. Isaac
,
C.-H. Jeong
,
D. Johnston
,
J. Klaassen
,
S. Leroyer
,
H. Lin
,
M. MacDonald
,
J. MacPhee
,
Z. Mariani
,
T. Munoz
,
J. Reid
,
A. Robichaud
,
Y. Rochon
,
K. Shairsingh
,
D. Sills
,
L. Spacek
,
C. Stroud
,
Y. Su
,
N. Taylor
,
J. Vanos
,
J. Voogt
,
J. M. Wang
,
T. Wiechers
,
S. Wren
,
H. Yang
, and
T. Yip

Abstract

The Pan and Parapan American Games (PA15) are the third largest sporting event in the world and were held in Toronto in the summer of 2015 (10–26 July and 7–15 August). This was used as an opportunity to coordinate and showcase existing innovative research and development activities related to weather, air quality (AQ), and health at Environment and Climate Change Canada. New observational technologies included weather stations based on compact sensors that were augmented with black globe thermometers, two Doppler lidars, two wave buoys, a 3D lightning mapping array, two new AQ stations, and low-cost AQ and ultraviolet sensors. These were supplemented by observations from other agencies, four mobile vehicles, two mobile AQ laboratories, and two supersites with enhanced vertical profiling. High-resolution modeling for weather (250 m and 1 km), AQ (2.5 km), lake circulation (2 km), and wave models (250-m, 1-km, and 2.5-km ensembles) were run. The focus of the science, which guided the design of the observation network, was to characterize and investigate the lake breeze, which affects thunderstorm initiation, air pollutant transport, and heat stress. Experimental forecasts and nowcasts were provided by research support desks. Web portals provided access to the experimental products for other government departments, public health authorities, and PA15 decision-makers. The data have been released through the government of Canada’s Open Data Portal and as a World Meteorological Organization’s Global Atmospheric Watch Urban Research Meteorology and Environment dataset.

Full access
I. A. Renfrew
,
R. S. Pickart
,
K. VÃ¥ge
,
G. W. K. Moore
,
T. J. Bracegirdle
,
A. D. Elvidge
,
E. Jeansson
,
T. Lachlan-Cope
,
L. T. McRaven
,
L. Papritz
,
J. Reuder
,
H. Sodemann
,
A. Terpstra
,
S. Waterman
,
H. Valdimarsson
,
A. Weiss
,
M. Almansi
,
F. Bahr
,
A. Brakstad
,
C. Barrell
,
J. K. Brooke
,
B. J. Brooks
,
I. M. Brooks
,
M. E. Brooks
,
E. M. Bruvik
,
C. Duscha
,
I. Fer
,
H. M. Golid
,
M. Hallerstig
,
I. Hessevik
,
J. Huang
,
L. Houghton
,
S. Jónsson
,
M. Jonassen
,
K. Jackson
,
K. Kvalsund
,
E. W. Kolstad
,
K. Konstali
,
J. Kristiansen
,
R. Ladkin
,
P. Lin
,
A. Macrander
,
A. Mitchell
,
H. Olafsson
,
A. Pacini
,
C. Payne
,
B. Palmason
,
M. D. Pérez-Hernández
,
A. K. Peterson
,
G. N. Petersen
,
M. N. Pisareva
,
J. O. Pope
,
A. Seidl
,
S. Semper
,
D. Sergeev
,
S. Skjelsvik
,
H. Søiland
,
D. Smith
,
M. A. Spall
,
T. Spengler
,
A. Touzeau
,
G. Tupper
,
Y. Weng
,
K. D. Williams
,
X. Yang
, and
S. Zhou

Abstract

The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway.

Open access

Cloudnet

Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations

A. J. Illingworth
,
R. J. Hogan
,
E.J. O'Connor
,
D. Bouniol
,
M. E. Brooks
,
J. Delanoé
,
D. P. Donovan
,
J. D. Eastment
,
N. Gaussiat
,
J. W. F. Goddard
,
M. Haeffelin
,
H. Klein Baltink
,
O. A. Krasnov
,
J. Pelon
,
J.-M. Piriou
,
A. Protat
,
H. W. J. Russchenberg
,
A. Seifert
,
A. M. Tompkins
,
G.-J. van Zadelhoff
,
F. Vinit
,
U. Willén
,
D. R. Wilson
, and
C. L. Wrench

The Cloudnet project aims to provide a systematic evaluation of clouds in forecast and climate models by comparing the model output with continuous ground-based observations of the vertical profiles of cloud properties. In the models, the properties of clouds are simplified and expressed in terms of the fraction of the model grid box, which is filled with cloud, together with the liquid and ice water content of the clouds. These models must get the clouds right if they are to correctly represent both their radiative properties and their key role in the production of precipitation, but there are few observations of the vertical profiles of the cloud properties that show whether or not they are successful. Cloud profiles derived from cloud radars, ceilometers, and dual-frequency microwave radiometers operated at three sites in France, Netherlands, and the United Kingdom for several years have been compared with the clouds in seven European models. The advantage of this continuous appraisal is that the feedback on how new versions of models are performing is provided in quasi-real time, as opposed to the much longer time scale needed for in-depth analysis of complex field studies. Here, two occasions are identified when the introduction of new versions of the ECMWF and Météo-France models leads to an immediate improvement in the representation of the clouds and also provides statistics on the performance of the seven models. The Cloudnet analysis scheme is currently being expanded to include sites outside Europe and further operational forecasting and climate models.

Full access
Keith A. Browning
,
Alan M. Blyth
,
Peter A. Clark
,
Ulrich Corsmeier
,
Cyril J. Morcrette
,
Judith L. Agnew
,
Sue P. Ballard
,
Dave Bamber
,
Christian Barthlott
,
Lindsay J. Bennett
,
Karl M. Beswick
,
Mark Bitter
,
Karen E. Bozier
,
Barbara J. Brooks
,
Chris G. Collier
,
Fay Davies
,
Bernhard Deny
,
Mark A. Dixon
,
Thomas Feuerle
,
Richard M. Forbes
,
Catherine Gaffard
,
Malcolm D. Gray
,
Rolf Hankers
,
Tim J. Hewison
,
Norbert Kalthoff
,
Samiro Khodayar
,
Martin Kohler
,
Christoph Kottmeier
,
Stephan Kraut
,
Michael Kunz
,
Darcy N. Ladd
,
Humphrey W. Lean
,
Jürgen Lenfant
,
Zhihong Li
,
John Marsham
,
James McGregor
,
Stephan D. Mobbs
,
John Nicol
,
Emily Norton
,
Douglas J. Parker
,
Felicity Perry
,
Markus Ramatschi
,
Hugo M. A. Ricketts
,
Nigel M. Roberts
,
Andrew Russell
,
Helmut Schulz
,
Elizabeth C. Slack
,
Geraint Vaughan
,
Joe Waight
,
David P. Wareing
,
Robert J. Watson
,
Ann R. Webb
, and
Andreas Wieser

The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model.

A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety of ground-based remote-sensing instruments, numerous rawinsondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP.

This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.

Full access