Search Results

You are looking at 1 - 10 of 24 items for

  • Author or Editor: Chang Liu x
  • Refine by Access: All Content x
Clear All Modify Search
Ingo Richter, Ping Chang, and Xue Liu

Statistical prediction of tropical sea surface temperatures (SSTs) is performed using linear inverse models (LIMs) that are constructed from both observations and general circulation model (GCM) output of SST. The goals are to establish a baseline for tropical SST predictions, to examine the extent to which the skill of a GCM-derived LIM is indicative of that GCM’s skill in forecast mode, and to examine the linkages between mean state bias and prediction skill. The observation-derived LIM is more skillful than a simple persistence forecasts in most regions. Its skill also compares well with some GCM forecasts except in the equatorial Pacific, where the GCMs are superior. The observation-derived LIM is matched or even outperformed by the GCM-derived LIMs, which may be related to the longer data record available for GCMs. The GCM-derived LIMs provide a fairly good measure for the skill achieved by their parent GCMs in forecast mode. In some cases, the skill of the LIM is actually superior to that of its parent GCM, indicating that the GCM predictions may suffer from initialization problems. A weak-to-moderate relation exists between model mean state error and prediction skill in some regions. An example is the eastern equatorial Atlantic, where an erroneously deep thermocline reduces SST variability, which in turn affects prediction skill. Another example is the equatorial Pacific, where skill appears to be linked to cold SST biases in the western tropical Pacific, which may reduce the strength of air–sea coupling.

Free access
Hung-Chi Kuo, Chih-Pei Chang, and Ching-Hwang Liu

Abstract

This study examines the convection and rapid filamentation in Typhoon Sinlaku (2008) using the Naval Research Laboratory (NRL) P-3 aircraft data collected during the Tropical Cyclone Structure 2008 (TCS-08) and The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) field experiments. The high-resolution aircraft radar and wind data are used to directly compute the filamentation time, to allow an investigation into the effect of filamentation on convection. During the reintensification stage, some regions of deep convection near the eyewall are found in the vorticity-dominated area where there is little filamentation. In some other parts of the eyewall and the outer spiral rainband region, including areas of upward motion, the filamentation process appears to suppress deep convection. However, the magnitude of the suppression differs greatly in the two regions. In the outer spiral band region, which is about 200 km from the center, the suppression is much more effective, such that the ratio of the deep convective regime occurrence over the stratiform regime varies from around 50% (200%) for filamentation time shorter (longer) than 24 min. In the eyewall cloud region where the conditions are conducive to deep convection, the filamentation effect may be quite limited. While effect of filamentation suppression is only about 10%, it is still systematic and conspicuous for filamentation times shorter than 19 min. The results suggest the possible importance of vortex-scale filamentation dynamics in suppressing deep convection and organizing spiral bands, which may affect the development and evolution of tropical cyclones.

Full access
C-P. Chang, Zhuo Wang, John McBride, and Ching-Hwang Liu

Abstract

In general, the Bay of Bengal, Indochina Peninsula, and Philippines are in the Asian summer monsoon regime while the Maritime Continent experiences a wet monsoon during boreal winter and a dry season during boreal summer. However, the complex distribution of land, sea, and terrain results in significant local variations of the annual cycle. This work uses historical station rainfall data to classify the annual cycles of rainfall over land areas, the TRMM rainfall measurements to identify the monsoon regimes of the four seasons in all of Southeast Asia, and the QuikSCAT winds to study the causes of the variations.

The annual cycle is dominated largely by interactions between the complex terrain and a simple annual reversal of the surface monsoonal winds throughout all monsoon regions from the Indian Ocean to the South China Sea and the equatorial western Pacific. The semiannual cycle is comparable in magnitude to the annual cycle over parts of the equatorial landmasses, but only a very small region reflects the twice-yearly crossing of the sun. Most of the semiannual cycle appears to be due to the influence of both the summer and the winter monsoon in the western part of the Maritime Continent where the annual cycle maximum occurs in fall. Analysis of the TRMM data reveals a structure whereby the boreal summer and winter monsoon rainfall regimes intertwine across the equator and both are strongly affected by the wind–terrain interaction. In particular, the boreal winter regime extends far northward along the eastern flanks of the major island groups and landmasses.

A hypothesis is presented to explain the asymmetric seasonal march in which the maximum convection follows a gradual southeastward progression path from the Asian summer monsoon to the Asian winter monsoon but experiences a sudden transition in the reverse. The hypothesis is based on the redistribution of mass between land and ocean areas during spring and fall that results from different land–ocean thermal memories. This mass redistribution between the two transition seasons produces sea level patterns leading to asymmetric wind–terrain interactions throughout the region, and a low-level divergence asymmetry in the region that promotes the southward march of maximum convection during boreal fall but opposes the northward march during boreal spring.

Full access
Xue Liu, Ping Chang, Jaison Kurian, R. Saravanan, and Xiaopei Lin

Abstract

Among various forms of atmospheric response to ocean mesoscale eddies, the rainfall response is the most difficult to quantify and is subject to considerable uncertainty. Here the robustness of the rainfall response is examined by comparing three different satellite-derived rainfall datasets: the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), NOAA Climate Prediction Center (CPC) morphing technique (CMORPH) global precipitation, and the newly available Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) that is based on the latest remote sensing technology with finer spatial and temporal resolution. Results show that all datasets exhibit a similar rainfall response to ocean eddies, but the amplitude of the rainfall response is much stronger in IMERG than in the other two, despite the fact that IMERG provides the weakest time-mean rainfall estimate. In situ validation against the NOAA’s Ocean Climate Stations Project (OCS) Kuroshio Extension Observatory (KEO) buoy rainfall measurement shows that IMERG is more accurate in estimating both the mean value of rainfall and its intensity distribution than the other two products, at least in the Kuroshio Extension region. Further analysis reveals that 1) eddy-induced precipitation response is significantly stronger in winter than in summer, and 2) warm-eddy-induced rainfall response is considerably stronger than cold-eddy-induced response, and these asymmetries in rainfall response are more robust in IMERG than in the other two datasets. Documenting and analyzing these asymmetric rainfall responses is important for understanding the potential role of ocean eddies in forcing the large-scale atmospheric circulation and climate.

Full access
Qianrong Ma, Jie Zhang, Yujun Ma, Asaminew Teshome Game, Zhiheng Chen, Yi Chang, and Meichen Liu

Abstract

The variability of extreme precipitation in eastern central Asia (ECA) during summer (June–August) and its corresponding mechanisms were investigated from a multiscale synergy perspective. Extreme precipitation in ECA displayed a quasi-monopole increasing pattern with abrupt change since 2000/01, which was likely dominated by increased high-latitude North Atlantic SST anomalies as shown by diagnosed and numerical experiment results. Increased SST via adjusting the quasi-stationary wave train that related to the negative North Atlantic Oscillation (NAO) and the east Atlantic/western Russia (EA/WR) pattern guided the cyclonic anomaly in central Asia, deepened the Lake Balkhash trough, and enhanced the moisture convergence in ECA. These anomalies also exhibited interdecadal enhancement after 2000. On the synoptic scale, two synoptic transient wave trains correlated with extreme precipitation in ECA by amplifying the amplitude of the quasi-stationary waves and guiding transient eddies in ECA. The induced transient eddies and deepened Lake Balkhash trough strengthened positive meridional vorticity advection and local positive vorticity, which promoted ascending motions, and guided the southerly warm moisture in ECA especially after 2000. Meanwhile, additional mesoscale vortices were stimulated and strengthened near the Tianshan Mountain in front of the wave trough, which, together with the enhanced meridional circulation, further increased extreme precipitation in ECA.

Restricted access
Tsing-Chang Chen, Ming-Cheng Yen, Gin-Rong Liu, and Shu-Yu Wang

The midocean trough in the North Pacific may form a favorable environment for the genesis of some synoptic disturbances. In contrast, the North Pacific anticyclone may hinder the downward penetration of these disturbances into the lower troposphere and prevent the moisture supply to these disturbances from the lower troposphere. Because no thick clouds, rainfall, and destructive surface winds are associated with these disturbances to attract attention, they have not been analyzed or documented. Actually, the upper-level wind speed within these disturbances is sometimes as strong as tropical cyclones and has the possibility of causing air traffic hazards in the western subtropic Pacific. With infrared images of the Japanese Geostationary Meteorological Satellite and the NCEP–NCAR reanalysis data, 25 North Pacific disturbances were identified over six summers (1993–98). Two aspects of these disturbances were explored: spatial structure and basic dynamics. For their structure, the disturbances possess a well-organized vortex in the middle to upper troposphere with a descending dry/cold core encircled by the moist ascending air around the vortex periphery; the secondary circulation of the vortex is opposite to other types of synoptic disturbances. Since vorticity reaches maximum values along the midocean trough line, barotrophic instability is suggested as a likely genesis mechanism of the vortex. After the vortex is formed, the horizontal advection of total vorticity results in its westward propagation, while the secondary circulation hinders this movement. Along its westward moving course, close to East Asia, there is a reduction in vortex size and a tangential speed increase inversely proportional to the vortex size. Diminishing its horizontal convergence/descending motion by the upper-tropospheric East Asian high and the lower-tropospheric monsoon low, the vortex eventually dissipates along the East Asian coast.

Full access
Yingying Sha, Zhengguo Shi, Xiaodong Liu, Zhisheng An, Xinzhou Li, and Hong Chang

Abstract

Numerical simulations were conducted to determine the impact of the Tian Shan Mountains and Pamir Plateau on arid conditions over interior Asia. These topographies are crucial for the differentiation of the precipitation seasonality among the subregions in the west, east, and north of the Tian Shan Mountains and Pamir Plateau, namely, arid central Asia, the Tarim basin, and the northern plains. Before the uplift of the Tian Shan Mountains and Pamir Plateau, the precipitation seasonality over the east arid subregion was consistent with that over the west arid subregion, with maximum rainfall in spring and winter and minimum rainfall in summer. After the uplift of the Tian Shan Mountains and Pamir Plateau, the original precipitation seasonality in the west was strengthened. As the precipitation in the east arid subregion increased in summer but decreased in winter and spring, the precipitation seasonality in the east changed to peak in summer, while the precipitation in the north arid subregion showed the opposite change. The precipitation alteration corresponded well with the change of vertical motion. With the modulation of atmospheric stationary waves, the remote East Asian monsoon was also impacted. Though enhanced southerly wind blew over East Asia, the monsoon precipitation over the east coast of China and subtropical western Pacific Ocean was significantly reduced as an anticyclonic circulation appeared. The Tian Shan Mountains and Pamir Plateau also contributed to the intensification of the East Asian winter monsoon.

Full access
Meiyu Chang, Bo Liu, Cristian Martinez-Villalobos, Guoyu Ren, Shangfeng Li, and Tianjun Zhou

Abstract

Precipitation accumulations, integrated over rainfall events, are investigated using hourly data across continental China during the warm season (May–October) from 1980 to 2015. Physically, the probability of precipitation accumulations drops slowly with event size up to an approximately exponential cutoff scale s L where probability drops much faster. Hence s L can be used as an indicator of high accumulation percentiles (i.e., extreme precipitation accumulations). Overall, the climatology of s L over continental China is about 54 mm. In terms of cutoff changes, the current warming stage (1980–2015) is divided into two periods, 1980–97 and 1998–2015. We find that the cutoff in 1998–2015 increases about 5.6% compared with that of 1980–97, with an average station increase of 4.7%. Regionally, s L increases are observed over East China (10.9% ± 1.5%), Northwest China (9.7% ± 2.5%), South China (9.4% ± 1.4%), southern Southwest China (5.6% ± 1.2%), and Central China (5.3% ± 1.0%), with decreases over North China (−10.3% ± 1.3%), Northeast China (−4.9% ± 1.5%), and northern Southwest China (−3.9% ± 1.8%). The conditional risk ratios for five subregions with increased cutoff s L are all greater than 1.0, indicating an increased risk of large precipitation accumulations in the most recent period. For high precipitation accumulations larger than the 99th percentile of accumulation s 99, the risk of extreme precipitation over these regions can increase above 20% except for South China. These increases of extreme accumulations can be largely explained by the extended duration of extreme accumulation events, especially for “extremely extreme” precipitation greater than s 99.

Restricted access
Bin Wang, Zhiwei Wu, Jianping Li, Jian Liu, Chih-Pei Chang, Yihui Ding, and Guoxiong Wu

Abstract

Defining the intensity of the East Asian summer monsoon (EASM) has been extremely controversial. This paper elaborates on the meanings of 25 existing EASM indices in terms of two observed major modes of interannual variation in the precipitation and circulation anomalies for the 1979–2006 period. The existing indices can be classified into five categories: the east–west thermal contrast, north–south thermal contrast, shear vorticity of zonal winds, southwesterly monsoon, and South China Sea monsoon. The last four types of indices reflect various aspects of the leading mode of interannual variability of the EASM rainfall and circulations, which correspond to the decaying El Niño, while the first category reflects the second mode that corresponds to the developing El Niño.

The authors recommend that the EASM strength can be represented by the principal component of the leading mode of the interannual variability, which provides a unified index for the majority of the existing indices. This new index is extremely robust, captures a large portion (50%) of the total variance of the precipitation and three-dimensional circulation, and has unique advantages over all the existing indices. The authors also recommend a simple index, the reversed Wang and Fan index, which is nearly identical to the leading principal component of the EASM and greatly facilitates real-time monitoring.

The proposed index highlights the significance of the mei-yu/baiu/changma rainfall in gauging the strength of the EASM. The mei-yu, which is produced in the primary rain-bearing system, the East Asian (EA) subtropical front, better represents the variability of the EASM circulation system. This new index reverses the traditional Chinese meaning of a strong EASM, which corresponds to a deficient mei-yu that is associated with an abnormal northward extension of southerly over northern China. The new definition is consistent with the meaning used in other monsoon regions worldwide, where abundant rainfall within the major local rain-bearing monsoon system is considered to be a strong monsoon.

Full access
Yuxin Zhao, Dequan Yang, Wei Li, Chang Liu, Xiong Deng, Rixu Hao, and Zhongjie He

Abstract

A spatiotemporal empirical orthogonal function (STEOF) forecast method is proposed and used in medium- to long-term sea surface height anomaly (SSHA) forecast. This method embeds temporal information in empirical orthogonal function spatial patterns, effectively capturing the evolving spatial distribution of variables and avoiding the typical rapid accumulation of forecast errors. The forecast experiments are carried out for SSHA in the South China Sea to evaluate the proposed model. Experimental results demonstrate that the STEOF forecast method consistently outperforms the autoregressive integrated moving average (ARIMA), optimal climatic normal (OCN), and persistence prediction. The model accurately forecasts the intensity and location of ocean eddies, indicating its great potential for practical applications in medium- to long-term ocean forecasts.

Restricted access