Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: Chih-Pei Chang x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Zhuo Wang
and
Chih-Pei Chang

Abstract

A regional climate model is used to simulate the summer monsoon onset in South and Southeast Asia during the year 2000 to explore the interaction between orographic precipitation and the large-scale monsoon circulation. In the control run, the model uses the U. S. Geological Survey topography data and simulates the observed monsoon onset reasonably well. In the sensitivity tests, mountains are removed within different regions south of the Tibetan Plateau. It is found that the Indochina Peninsula monsoon onset is closely related to the local wind–terrain–precipitation interaction, while the Indian monsoon onset is more controlled by the large-scale land–sea thermal contrast.

The sensitivity tests suggest two opposite effects of high terrain on the monsoon circulation and precipitation. When the terrain height is below the lifted condensation level (LCL), the low-level westerlies and the orographic precipitation weaken with increasing terrain height due to the surface drag effect. When the terrain height is above the LCL, the positive feedback associated with the diabatic forcing of orographic precipitation is dominant, and a large mountain height leads to heavier orographic precipitation and stronger low-level westerlies. The sensitivity tests also show that the impact of orographic precipitation in the Indochina Peninsula extends up to 30° longitude upstream and affects monsoon precipitation along the western coast of India.

Full access
Chih-Pei Chang
and
Mong-Ming Lu

Abstract

Current skill in the seasonal prediction of the Asian monsoon falls rapidly north of 40°N, where the Siberian high (SH) is a prominent manifestation of the East Asian winter monsoon (EAWM). Variations in the SH are closely related to winter weather over a large latitudinal span from northern Asia to the equator. Here it is shown that during the three recent decades the SH had an intraseasonal variation that tended to be seasonally synchronized, which produced an out-of-phase relationship between November and December/January. This implies a special intraseasonal predictability that did not exist in the two previous decades. If this relationship continues, the EAWM will be the only known major circulation system whose intensity can be predicted to reverse from the previous month. It is hypothesized that this predictability is related to the reduced frequency of blocking events during the positive phase of the Arctic Oscillation (AO). While this suggests the predictability may diminish if the AO phase is reversed, it may become more prevalent in the future if the prediction of more frequent positive AO-like patterns in a warming world forced by greenhouse gases is borne out.

Full access
Mong-Ming Lu
and
Chih-Pei Chang

Abstract

The highest frequency of late-winter cold-air outbreaks in East and Southeast Asia over 50 years was recorded in 2005, when three strong successive cold surges occurred in the South China Sea within a span of 30 days from mid-February to mid-March. These events also coincided with the first break of 18 consecutive warm winters over China. The strong pulsation of the surface Siberian Mongolia high (SMH) that triggered these events was found to result from the confluence of several events. To the east, a strong Pacific blocking with three pulses of westward extension intensified the stationary East Asian major trough to create a favorable condition for cold-air outbreaks. To the west, the dominance of the Atlantic blocking and an anomalous deepened trough in the Scandinavian/Barents Sea region provided the source of a succession of Rossby wave activity fluxes for the downstream development. An upper-level central Asian anticyclone that is often associated with a stronger SMH was anomalously strong and provided additional forcing. In terms of the persistence and strength, this central Asian anticyclone was correlated with the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) only when SMH is weak (warm winters). During strong SMH seasons (cold winters) the correlation vanishes. However, during late winter 2005 the central Asian anticyclone was strengthened by the Atlantic blocking through both the downstream wave activities and a circulation change that affected the Atlantic and west Asian jets. As a result, the period from mid-February to mid-March of 2005 stands out as a record-breaking period in the Asian winter monsoon.

Full access
Chih-Pei Chang
,
Yi-Ting Yang
, and
Hung-Chi Kuo

Abstract

Taiwan, which is in the middle of one of the most active of the western North Pacific Ocean’s tropical cyclone (TC) zones, experienced a dramatic increase in typhoon-related rainfall in the beginning of the twenty-first century. This record-breaking increase has led to suggestions that it is the manifestation of the effects of global warming. With rainfall significantly influenced by its steep terrain, Taiwan offers a natural laboratory to study the role that terrain effects may play in the climate change of TC rainfall. Here, it is shown that most of the recently observed large increases in typhoon-related rainfall are the result of slow-moving TCs and the location of their tracks relative to the meso-α-scale terrain. In addition, stronger interaction between the typhoon circulation and southwest monsoon wind surges after the typhoon center moves into the Taiwan Strait may cause a long-term trend of increasing typhoon rainfall intensity, which is not observed before the typhoon center exits Taiwan. The variation in the location of the track cannot be related to the effects of global warming on western North Pacific TC tracks reported in the literature. The weaker steering flow and the stronger monsoon–TC interaction are consistent with the recently discovered multidecadal trend of intensifying subtropical monsoon and tropical circulations, which is contrary to some theoretical and model projections of global warming. There is also no evidence of a positive feedback between global warming–related water vapor supply and TC intensity, as the number of strong landfalling TCs has decreased significantly since 1960 and the recent heavy rainfall typhoons are all of weak-to-medium intensity.

Full access
Yun-Lan Chen
,
Chung-Hsiung Sui
,
Chih-Pei Chang
, and
Kai-Chih Tseng

Abstract

This paper studies the influences of the Madden–Julian oscillation (MJO) on East Asian (EA) winter rainfall using the singular value decomposition (SVD) approach. This method uses two-dimensional instead of latitudinally averaged variables in the commonly used real-time multivariate MJO (RMM) index. A comparison of the two approaches is made using the same OLR and zonal wind data over 37 boreal winter seasons of December–March. The SVD composite reveals a more conspicuous and coherent variation throughout the MJO cycle, while the RMM composite is more ambiguous. In particular, the SVD analysis identifies the convection anomalies over the Maritime Continent and the subtropical western Pacific (MCWP) as a major cause of enhanced rainfall in EA at RMM phases 8 and 1. This is at least one-eighth of a cycle earlier than the phases of convection development over the Indian Ocean (IO) that were emphasized by previous studies. A linearized global baroclinic model is used to demonstrate the mechanism of MJO forcing on EA rainfall during various phases, with a focus on the MCWP cooling. The result shows that the anomalous MCWP cooling and the resultant low-level anticyclonic flow interact with the East Asian jet, leading to an overall weakened EA winter monsoon circulation. The associated anomalous overturning circulation, with ascending motion and low-level horizontal moisture convergence in EA, contributes to the enhanced rainfall. This model result supports the interpretation of the SVD analysis, in that the MCWP cooling induced anomalous meridional circulation is a more direct cause of enhanced EA rainfall than the IO heating (or the IO–MCWP heating dipole) induced Rossby wave teleconnection.

Full access
Bin Wang
,
Zhiwei Wu
,
Chih-Pei Chang
,
Jian Liu
,
Jianping Li
, and
Tianjun Zhou

Abstract

This study investigates the causes of interannual-to-interdecadal variability of the East Asian (EA; 0°–60°N, 100°–140°E) winter monsoon (EAWM) over the past 50 yr (1957–2006). The winter mean surface air temperature variations are dominated by two distinct principal modes that together account for 74% of the total temperature variance. The two modes have notably different circulation structures and sources of variability. The northern mode, characterized by a westward shift of the EA major trough and enhanced surface pressure over central Siberia, represents a cold winter in the northern EA resulting from cold-air intrusion from central Siberia. The southern mode, on the other hand, features a deepening EA trough and increased surface pressure over Mongolia, representing a cold winter south of 40°N resulting from cold-air intrusion from western Mongolia. The cold northern mode is preceded by excessive autumn snow covers over southern Siberia–Mongolia, whereas the cold southern mode is preceded by development of La Niña episodes and reduced snow covers over northeast Siberia. These remarkably different spatiotemporal structures and origins are primarily associated with interannual variations. On the decadal or longer time scale their structures are somewhat similar and are preceded by similar autumn sea surface temperature anomalies over the North Atlantic and tropical Indian Ocean. The two modes found for the EA region also represent the winter temperature variability over the entire Asian continent. Thus, study of the predictability of the two modes may shed light on understanding the predictable dynamics of the Asian winter monsoon.

Full access
Pei-ken Kao
,
Chi-Cherng Hong
,
An-Yi Huang
, and
Chih-Chun Chang

Abstract

The cross-basin interaction of the second EOFs of the interannual SST in the North Atlantic and North Pacific—the North Atlantic tripole (NAT) SST and Pacific meridional mode (PMM)—is discussed. Observations revealed that the total variances of the NAT and PMM have simultaneously experienced interdecadal enhancement since the 1990s. Wavelet analysis indicated that this enhancement was associated with the interdecadal variations (8–16 years) of the NAT and PMM, which have become significantly and positively coherent since the 1990s. This interdecadal variation also changed the interannual NAT–PMM relationship from negative to positive. The regression analysis indicated that the NAT forced a Matsuno–Gill circulation anomaly, which had a substantial lag impact on the PMM SST through wind–evaporation–SST feedback. Additionally, the NAT induced oceanic temperature advection, which also partially contributed to the PMM SST. On the other hand, the PMM-associated middle–upper atmospheric teleconnection, a North Atlantic Oscillation (NAO)-like circulation anomaly in the North Atlantic, gave positive feedback to the NAT. The numerical experiments suggest that the enhancement of the NAT–PMM interaction since the 1990s was associated with the eastward shift of PMM-associated convection, which was further enhanced by eastward extension of the upper-level extratropical jet in the North Pacific.

Significance Statement

This study aimed at a better understanding of the cross-basin interaction between the North Atlantic and North Pacific. Our study indicates that the cross-basin interaction in the interannual sea surface temperature between the Pacific meridional mode (PMM) and North Atlantic tripole (NAT) became stronger since the 1990s. The observation yields that this enhancement was associated with the interdecadal variations of the NAT and PMM, which have become significantly and positively coherent since the 1990s. The observation yields that the NAT-forced atmospheric large-scale circulation anomaly had a substantial lag impact on the PMM. On the other hand, the PMM-induced middle–upper atmospheric teleconnection, a North Atlantic Oscillation (NAO)-like circulation anomaly, gave positive feedback to the NAT. The numerical experiments suggest that the enhancement of the NAT–PMM interaction since the 1990s primarily resulted from the eastward shift of PMM-associated convection.

Free access
Bin Wang
,
Zhiwei Wu
,
Jianping Li
,
Jian Liu
,
Chih-Pei Chang
,
Yihui Ding
, and
Guoxiong Wu

Abstract

Defining the intensity of the East Asian summer monsoon (EASM) has been extremely controversial. This paper elaborates on the meanings of 25 existing EASM indices in terms of two observed major modes of interannual variation in the precipitation and circulation anomalies for the 1979–2006 period. The existing indices can be classified into five categories: the east–west thermal contrast, north–south thermal contrast, shear vorticity of zonal winds, southwesterly monsoon, and South China Sea monsoon. The last four types of indices reflect various aspects of the leading mode of interannual variability of the EASM rainfall and circulations, which correspond to the decaying El Niño, while the first category reflects the second mode that corresponds to the developing El Niño.

The authors recommend that the EASM strength can be represented by the principal component of the leading mode of the interannual variability, which provides a unified index for the majority of the existing indices. This new index is extremely robust, captures a large portion (50%) of the total variance of the precipitation and three-dimensional circulation, and has unique advantages over all the existing indices. The authors also recommend a simple index, the reversed Wang and Fan index, which is nearly identical to the leading principal component of the EASM and greatly facilitates real-time monitoring.

The proposed index highlights the significance of the mei-yu/baiu/changma rainfall in gauging the strength of the EASM. The mei-yu, which is produced in the primary rain-bearing system, the East Asian (EA) subtropical front, better represents the variability of the EASM circulation system. This new index reverses the traditional Chinese meaning of a strong EASM, which corresponds to a deficient mei-yu that is associated with an abnormal northward extension of southerly over northern China. The new definition is consistent with the meaning used in other monsoon regions worldwide, where abundant rainfall within the major local rain-bearing monsoon system is considered to be a strong monsoon.

Full access
See Yee Lim
,
Charline Marzin
,
Prince Xavier
,
Chih-Pei Chang
, and
Bertrand Timbal

Abstract

TRMM rainfall data from 1998–2012 are used to study the impacts and interactions of cold surges (CSs) and the Madden–Julian oscillation (MJO) on rainfall over Southeast Asia during the boreal winter season from November to February. CSs are identified using a new large-scale index. The frequencies of occurrences of these two large-scale events are comparable (about 20% of the days each), but the spatial pattern of impacts show differences resulting from the interactions of the general flow with the complex orography of the region. The largest impact of CSs occurs in and around the southern South China Sea as a result of increased low-level convergence on the windward side of the terrain and increased shear vorticity off Borneo that enhances the Borneo vortex. The largest impact of the MJO is in the eastern equatorial Indian Ocean, sheltered from CSs by Sumatra. In general CSs are significantly more likely to trigger extreme rainfall. When both systems are present, the rainfall pattern is mainly controlled by the CSs. However, the MJO makes the environment more favorable for convection by moistening the atmosphere and facilitating conditional instability, resulting in a significant increased rainfall response compared to CSs alone. In addition to the interactions of the two systems in convection, this study confirms a previously identified mechanism in which the MJO may reduce CS frequency through opposing dynamic structures.

Full access