Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Chihiro Kodama x
  • Refine by Access: All Content x
Clear All Modify Search
Chihiro Kodama and Toshiki Iwasaki

Abstract

The influence of the sea surface temperature (SST) rise on extratropical baroclinic instability wave activity is investigated using an aquaplanet general circulation model (GCM). Two types of runs were performed: the High+3 run, in which the SST is increased by 3 K only at high latitudes, and the All+3 run, in which the SST is increased uniformly by 3 K all over the globe. These SST rises were intended to reproduce essential changes of the surface air temperature due to global warming. Wave activity changes are analyzed and discussed from the viewpoint of the energetics.

In the High+3 run, midlatitude meridional temperature gradient is decreased in the lower troposphere and the wave energy is suppressed in the extratropics. In the All+3 run, although the large tropical latent heat release greatly enhances the midlatitude meridional temperature gradient in the upper troposphere, global mean wave energy does not change significantly. These results suggest that the low-level baroclinicity is much more important for baroclinic instability wave activity than upper-level baroclinicity. A poleward shift of wave energy, seen in global warming simulations, is evident in the All+3 run. Wave energy generation analysis suggests that the poleward shift of wave activity may be caused by the enhanced and poleward-shifted baroclinicity in the higher latitudes and the increased static stability in the lower latitudes. Poleward expansion of the high-baroclinicity region is still an open question.

Full access
Toshiki Iwasaki and Chihiro Kodama

Abstract

The growth rate of baroclinic instability waves is generalized in terms of wave–mean flow interactions, with an emphasis on the influence of the vertical profile of baroclinicity. The wave energy is converted from the zonal mean kinetic energy and the growth rate is proportional to the mean zonal flow difference between the Eliassen–Palm (E-P) flux convergence and divergence areas. Mass-weighted isentropic zonal means facilitate the expression of the lower boundary conditions for the mass streamfunctions and E-P flux.

For Eady waves, intersections of isentropes with lower/upper boundaries induce the E-P flux divergence/convergence. The growth rate is proportional to the mean zonal flow difference between the two boundaries, indicating that baroclinicity at each level contributes evenly to the instability. The reduced zonal mean kinetic energy is compensated by a conversion from the zonal mean available potential energy.

Aquaplanet experiments are carried out to investigate the actual characteristics of baroclinic instability waves. The wave activity is shown to be sensitive to the upper-tropospheric baroclinicity, though it may be most sensitive to baroclinicity near 800 hPa, which is the maximal level of the E-P flux. The local wave energy generation rate suggests that the increased upper-tropospheric zonal flow directly enhances the upper-tropospheric wave energy at the midlatitudes. Note that the actual baroclinic instability waves accompany a considerable amount of the equatorward E-P flux, which causes extinction of wave energy in the subtropical upper troposphere.

Full access
Tatsuya Seiki, Chihiro Kodama, Akira T. Noda, and Masaki Satoh

Abstract

This study examines the impact of an alteration of a cloud microphysics scheme on the representation of longwave cloud radiative forcing (LWCRF) and its impact on the atmosphere in global cloud-system-resolving simulations. A new double-moment bulk cloud microphysics scheme is used, and the simulated results are compared with those of a previous study. It is demonstrated that improvements within the new cloud microphysics scheme have the potential to substantially improve climate simulations. The new cloud microphysics scheme represents a realistic spatial distribution of the cloud fraction and LWCRF, particularly near the tropopause. The improvement in the cirrus cloud-top height by the new cloud microphysics scheme substantially reduces the warm bias in atmospheric temperature from the previous simulation via LWCRF by the cirrus clouds. The conversion rate of cloud ice to snow and gravitational sedimentation of cloud ice are the most important parameters for determining the strength of the radiative heating near the tropopause and its impact on atmospheric temperature.

Full access
Masuo Nakano, Hisashi Yashiro, Chihiro Kodama, and Hirofumi Tomita

Abstract

Reducing the computational cost of weather and climate simulations would lower electric energy consumption. From the standpoint of reducing costs, the use of reduced precision arithmetic has become an active area of research. Here the impact of using single-precision arithmetic on simulation accuracy is examined by conducting Jablonowski and Williamson’s baroclinic wave tests using the dynamical core of a global fully compressible nonhydrostatic model. The model employs a finite-volume method discretized on an icosahedral grid system and its mesh size is set to 220, 56, 14, and 3.5 km. When double-precision arithmetic is fully replaced by single-precision arithmetic, a spurious wavenumber-5 structure becomes dominant in both hemispheres, rather than the expected baroclinic wave growth only in the Northern Hemisphere. It was found that this spurious wave growth comes from errors in the calculation of gridcell geometrics. Therefore, an additional simulation was conducted using double precision for calculations that only need to be performed for model setup, including calculation of gridcell geometrics, and single precision everywhere else, meaning that all calculations performed each time step used single precision. In this case, the model successfully simulated the growth of the baroclinic wave with only small errors and a 46% reduction in runtime. These results suggest that the use of single-precision arithmetic will allow significant reduction of computational costs in next-generation weather and climate simulations using a fully compressible nonhydrostatic global model with the finite-volume method.

Open access
Hiroshi G. Takahashi, Nozomi Kamizawa, Tomoe Nasuno, Youhei Yamada, Chihiro Kodama and, Shiori Sugimoto, and Masaki Satoh

Abstract

This study examined the responses of Asian monsoon precipitation to global warming on the regional scale, focusing on monsoon westerlies and monsoon trough. This is because the Asian monsoon precipitation is closely associated with tropical disturbances. To reproduce convective precipitation and tropical disturbances, this study used outputs of a high-resolution climate simulation. Two sets of approximately 30-yr simulations under present-day (control) and warmer climate conditions (global warming) were conducted by the 14-km Nonhydrostatic Icosahedral Atmospheric Model (NICAM) with explicitly calculated convection. For understanding the spatial pattern of future precipitation changes, a further set of a 5-yr simulation [sea surface temperature (SST) + 4 K] was also conducted. Overall, the Asian summer monsoon was well simulated by the model. Precipitation increased as a result of global warming along the monsoon trough, which was zonally elongated across northern India, the Indochina Peninsula, and the western North Pacific Ocean. This increased precipitation was likely due to an increase in precipitable water. The spatial pattern of the increased precipitation was associated with enhanced cyclonic circulations over a large area along the monsoon trough, although it was difficult to determine whether the large-scale monsoon westerly was enhanced. This enhancement can be explained by future changes in tropical disturbance activity, including weak tropical cyclones. However, over part of South Asia, circulation changes may not contribute to the increased precipitation, suggesting regional characteristics. The regional increase in precipitation along the monsoon trough was mostly explained by the uniform increase in SST, whereas SST spatial patterns are important over some regions.

Open access
Yohei Yamada, Masaki Satoh, Masato Sugi, Chihiro Kodama, Akira T. Noda, Masuo Nakano, and Tomoe Nasuno

Abstract

Future changes in tropical cyclone (TC) activity and structure are investigated using the outputs of a 14-km mesh climate simulation. A set of 30-yr simulations was performed under present-day and warmer climate conditions using a nonhydrostatic icosahedral atmospheric model with explicitly calculated convection. The model projected that the global frequency of TCs is reduced by 22.7%, the ratio of intense TCs is increased by 6.6%, and the precipitation rate within 100 km of the TC center increased by 11.8% under warmer climate conditions. These tendencies are consistent with previous studies using a hydrostatic global model with cumulus parameterization.

The responses of vertical and horizontal structures to global warming are investigated for TCs with the same intensity categories. For TCs whose minimum sea level pressure (SLP) reaches less than 980 hPa, the model predicted that tangential wind increases in the outside region of the eyewall. Increases in the tangential wind are related to the elevation of the tropopause caused by global warming. The tropopause rise induces an upward extension of the eyewall, resulting in an increase in latent heating in the upper layers of the inclined eyewall. Thus, SLP is reduced underneath the warmed eyewall regions through hydrostatic adjustment. The altered distribution of SLP enhances tangential winds in the outward region of the eyewall cloud. Hence, this study shows that the horizontal scale of TCs defined by a radius of 12 m s−1 surface wind is projected to increase compared with the same intensity categories for SLP less than 980 hPa.

Open access
Ying-Wen Chen, Tatsuya Seiki, Chihiro Kodama, Masaki Satoh, Akira T. Noda, and Yohei Yamada

Abstract

This study examines cloud responses to global warming using a global nonhydrostatic model with two different cloud microphysics schemes. The cloud microphysics schemes tested here are the single- and double-moment schemes with six water categories: these schemes are referred to as NSW6 and NDW6, respectively. Simulations of one year for NSW6 and one boreal summer for NDW6 are performed using the nonhydrostatic icosahedral atmospheric model with a mesh size of approximately 14 km. NSW6 and NDW6 exhibit similar changes in the visible cloud fraction under conditions of global warming. The longwave (LW) cloud radiative feedbacks in NSW6 and NDW6 are within the upper half of the phase 5 of the Coupled Model Intercomparison Project (CMIP5)–Cloud Feedback Model Intercomparison Project 2 (CFMIP2) range. The LW cloud radiative feedbacks are mainly attributed to cirrus clouds, which prevail more in the tropics under global warming conditions. For NDW6, the LW cloud radiative feedbacks from cirrus clouds also extend to midlatitudes. The changes in cirrus clouds and their effects on LW cloud radiative forcing (LWCRF) are assessed based on changes in the effective radii of ice hydrometeors () and the cloud fraction. It was determined that an increase in has a nonnegligible impact on LWCRF compared with an increase in cloud fraction.

Full access
Yoshiaki Miyamoto, Masaki Satoh, Hirofumi Tomita, Kazuyoshi Oouchi, Yohei Yamada, Chihiro Kodama, and James Kinter III

Abstract

The degree of gradient wind balance was investigated in a number of tropical cyclones (TCs) simulated under realistic environments. The results of global-scale numerical simulations without cumulus parameterization were used, with a horizontal mesh size of 7 km. On average, azimuthally averaged maximum tangential velocities at 850 (925) hPa in the simulated TCs were 0.72% (1.95%) faster than gradient wind–balanced tangential velocity (GWV) during quasi-steady periods. Of the simulated TCs, 75% satisfied the gradient wind balance at the radius of maximum wind speed (RMW) at 850 and at 925 hPa to within about 4.0%. These results were qualitatively similar to those obtained during the intensification phase. In contrast, averages of the maximum and minimum deviations from the GWV, in all the azimuths at the RMW, achieved up to 40% of the maximum tangential velocity. Azimuthally averaged tangential velocities exceeded the GWV (i.e., supergradient) inside the RMW in the lower troposphere, whereas the velocities were close to or slightly slower than GWV (i.e., subgradient) in the other regions. The tangential velocities at 925 hPa were faster (slower) in the right-hand (left hand) side of the TC motion. When the tangential velocities at the RMW were supergradient, the primary circulation tended to decay rapidly in the vertical direction and slowly in the radial direction, and the eyewall updraft and the RMW were at larger radii. Statistical analyses revealed that the TC with supergradient wind at the RMW at 850 hPa was characterized by stronger intensity, larger RMW, more axisymmetric structure, and an intensity stronger than potential intensity.

Full access