Search Results
You are looking at 1 - 10 of 83 items for
- Author or Editor: Chris Snyder x
- Refine by Access: All Content x
Abstract
Observations of hurricane position, which in practice might be available from satellite or radar imagery, can be easily assimilated with an ensemble Kalman filter (EnKF) given an operator that computes the position of the vortex in the background forecast. The simple linear updating scheme used in the EnKF is effective for small displacements of forecasted vortices from the true position; this situation is operationally relevant since hurricane position is often available frequently in time. When displacements of the forecasted vortices are comparable to the vortex size, non-Gaussian effects become significant and the EnKF’s linear update begins to degrade. Simulations using a simple two-dimensional barotropic model demonstrate the potential of the technique and show that the track forecast initialized with the EnKF analysis is improved. The assimilation of observations of the vortex shape and intensity, along with position, extends the technique’s effectiveness to larger displacements of the forecasted vortices than when assimilating position alone.
Abstract
Observations of hurricane position, which in practice might be available from satellite or radar imagery, can be easily assimilated with an ensemble Kalman filter (EnKF) given an operator that computes the position of the vortex in the background forecast. The simple linear updating scheme used in the EnKF is effective for small displacements of forecasted vortices from the true position; this situation is operationally relevant since hurricane position is often available frequently in time. When displacements of the forecasted vortices are comparable to the vortex size, non-Gaussian effects become significant and the EnKF’s linear update begins to degrade. Simulations using a simple two-dimensional barotropic model demonstrate the potential of the technique and show that the track forecast initialized with the EnKF analysis is improved. The assimilation of observations of the vortex shape and intensity, along with position, extends the technique’s effectiveness to larger displacements of the forecasted vortices than when assimilating position alone.
Abstract
Particle filtering methods for data assimilation may suffer from the “curse of dimensionality,” where the required ensemble size grows rapidly as the dimension increases. It would, therefore, be useful to know a priori whether a particle filter is feasible to implement in a given system. Previous work provides an asymptotic relation between the necessary ensemble size and an exponential function of
Abstract
Particle filtering methods for data assimilation may suffer from the “curse of dimensionality,” where the required ensemble size grows rapidly as the dimension increases. It would, therefore, be useful to know a priori whether a particle filter is feasible to implement in a given system. Previous work provides an asymptotic relation between the necessary ensemble size and an exponential function of
Abstract
Assimilation of Doppler radar data into cloud models is an important obstacle to routine numerical weather prediction for convective-scale motions; the difficulty lies in initializing fields of wind, temperature, moisture, and condensate given only observations of radial velocity and reflectivity from the radar. This paper investigates the potential of the ensemble Kalman filter (EnKF), which estimates the covariances between observed variables and the state through an ensemble of forecasts, to assimilate radar observations at convective scales. In the basic experiment, simulated observations are extracted from a reference simulation of a splitting supercell and assimilated using the EnKF and the same numerical model that produced the reference simulation. The EnKF produces accurate analyses, including the unobserved variables, after roughly 30 min (or six scans) of radial velocity observations. Additional experiments, in which forecasts are made from the ensemble-mean analysis, reveal that forecast errors grow significantly in this simple system, so that the ability of the EnKF to track the reference solution is not simply because of stable system dynamics. It is also found that the covariances between radial velocity and temperature, moisture, and condensate are important to the quality of the analyses, as is the initialization chosen for the ensemble members prior to assimilating the first observations. These results are promising, especially given the ease of implementing the EnKF. A number of important issues remain, however, including the initialization of the ensemble prior to the first observation, the treatment of uncertainty in the environmental sounding, the role of error in the forecast model (particularly the microphysical parameterizations), and the treatment of lateral boundary conditions.
Abstract
Assimilation of Doppler radar data into cloud models is an important obstacle to routine numerical weather prediction for convective-scale motions; the difficulty lies in initializing fields of wind, temperature, moisture, and condensate given only observations of radial velocity and reflectivity from the radar. This paper investigates the potential of the ensemble Kalman filter (EnKF), which estimates the covariances between observed variables and the state through an ensemble of forecasts, to assimilate radar observations at convective scales. In the basic experiment, simulated observations are extracted from a reference simulation of a splitting supercell and assimilated using the EnKF and the same numerical model that produced the reference simulation. The EnKF produces accurate analyses, including the unobserved variables, after roughly 30 min (or six scans) of radial velocity observations. Additional experiments, in which forecasts are made from the ensemble-mean analysis, reveal that forecast errors grow significantly in this simple system, so that the ability of the EnKF to track the reference solution is not simply because of stable system dynamics. It is also found that the covariances between radial velocity and temperature, moisture, and condensate are important to the quality of the analyses, as is the initialization chosen for the ensemble members prior to assimilating the first observations. These results are promising, especially given the ease of implementing the EnKF. A number of important issues remain, however, including the initialization of the ensemble prior to the first observation, the treatment of uncertainty in the environmental sounding, the role of error in the forecast model (particularly the microphysical parameterizations), and the treatment of lateral boundary conditions.
Abstract
The spontaneous generation of inertia–gravity waves in idealized life cycles of baroclinic instability is investigated using the Weather Research and Forecasting Model. Two substantially different life cycles of baroclinic instability are obtained by varying the initial zonal jet. The wave generation depends strongly on the details of the baroclinic wave’s development. In the life cycle dominated by cyclonic behavior, the most conspicuous gravity waves are excited by the upper-level jet and are broadly consistent with previous simulations of O’Sullivan and Dunkerton. In the life cycle that is dominated by anticyclonic behavior, the most conspicuous gravity waves even in the stratosphere are excited by the surface fronts, although the fronts are no stronger than in the cyclonic life cycle. The anticyclonic life cycle also reveals waves in the lower stratosphere above the upper-level trough of the baroclinic wave; these waves have not been previously identified in idealized simulations. The sensitivities of the different waves to both resolution and dissipation are discussed.
Abstract
The spontaneous generation of inertia–gravity waves in idealized life cycles of baroclinic instability is investigated using the Weather Research and Forecasting Model. Two substantially different life cycles of baroclinic instability are obtained by varying the initial zonal jet. The wave generation depends strongly on the details of the baroclinic wave’s development. In the life cycle dominated by cyclonic behavior, the most conspicuous gravity waves are excited by the upper-level jet and are broadly consistent with previous simulations of O’Sullivan and Dunkerton. In the life cycle that is dominated by anticyclonic behavior, the most conspicuous gravity waves even in the stratosphere are excited by the surface fronts, although the fronts are no stronger than in the cyclonic life cycle. The anticyclonic life cycle also reveals waves in the lower stratosphere above the upper-level trough of the baroclinic wave; these waves have not been previously identified in idealized simulations. The sensitivities of the different waves to both resolution and dissipation are discussed.
Abstract
Recently various versions of ensemble Kalman filters (EnKFs) have been proposed and studied. This work concerns, in a mathematically rigorous manner, the relative performance of two major versions of EnKF when the forecast ensemble is non-Gaussian. The approach is based on the stability of the filtering methods against small model violations, using the expected squared L 2 distance as a measure of the deviation between the updated distributions. Analytical and experimental results suggest that both stochastic and deterministic EnKFs are sensitive to the violation of the Gaussian assumption, while the stochastic filter is relatively more stable than the deterministic filter under certain circumstances, especially when there are wild outliers. These results not only agree with previous empirical studies, but also suggest a natural choice of a free parameter in the square root Kalman filter algorithm.
Abstract
Recently various versions of ensemble Kalman filters (EnKFs) have been proposed and studied. This work concerns, in a mathematically rigorous manner, the relative performance of two major versions of EnKF when the forecast ensemble is non-Gaussian. The approach is based on the stability of the filtering methods against small model violations, using the expected squared L 2 distance as a measure of the deviation between the updated distributions. Analytical and experimental results suggest that both stochastic and deterministic EnKFs are sensitive to the violation of the Gaussian assumption, while the stochastic filter is relatively more stable than the deterministic filter under certain circumstances, especially when there are wild outliers. These results not only agree with previous empirical studies, but also suggest a natural choice of a free parameter in the square root Kalman filter algorithm.
Abstract
The assimilation of surface observations using an ensemble Kalman filter (EnKF) approach was successfully performed in the Advanced Research version of the Weather Research and Forecasting Model (WRF) coupled with the Data Assimilation Research Testbed (DART) system. The mesoscale cycling experiment for the continuous ensemble data assimilation was verified against independent surface mesonet observations and demonstrated the positive impact on short-range forecasts over the contiguous U.S. (CONUS) domain throughout the month-long period of June 2008. The EnKF assimilation of surface observations was found useful for systematically improving the simulation of the depth and the structure of the planetary boundary layer (PBL) and the reduction of surface bias errors. These benefits were extended above PBL and resulted in a better precipitation forecast for up to 12 h. With the careful specification of observation errors, not only the reliability of the ensemble system but also the quality of the following forecast was improved, especially in moisture. In this retrospective case study of a squall line, assimilation of surface observations produced analysis increments consistent with the structure and dynamics of the boundary layer. As a result, it enhanced the horizontal gradient of temperature and moisture across the frontal system to provide a favorable condition for the convective initiation and the following heavy rainfall prediction in the Oklahoma Panhandle. Even with the assimilation of upper-level observations, the analysis without the assimilation of surface observations simulated a surface cold front that was much weaker and slower than observed.
Abstract
The assimilation of surface observations using an ensemble Kalman filter (EnKF) approach was successfully performed in the Advanced Research version of the Weather Research and Forecasting Model (WRF) coupled with the Data Assimilation Research Testbed (DART) system. The mesoscale cycling experiment for the continuous ensemble data assimilation was verified against independent surface mesonet observations and demonstrated the positive impact on short-range forecasts over the contiguous U.S. (CONUS) domain throughout the month-long period of June 2008. The EnKF assimilation of surface observations was found useful for systematically improving the simulation of the depth and the structure of the planetary boundary layer (PBL) and the reduction of surface bias errors. These benefits were extended above PBL and resulted in a better precipitation forecast for up to 12 h. With the careful specification of observation errors, not only the reliability of the ensemble system but also the quality of the following forecast was improved, especially in moisture. In this retrospective case study of a squall line, assimilation of surface observations produced analysis increments consistent with the structure and dynamics of the boundary layer. As a result, it enhanced the horizontal gradient of temperature and moisture across the frontal system to provide a favorable condition for the convective initiation and the following heavy rainfall prediction in the Oklahoma Panhandle. Even with the assimilation of upper-level observations, the analysis without the assimilation of surface observations simulated a surface cold front that was much weaker and slower than observed.
Abstract
Particle filters may suffer from degeneracy of the particle weights. For the simplest “bootstrap” filter, it is known that avoiding degeneracy in large systems requires that the ensemble size must increase exponentially with the variance of the observation log-likelihood. The present article shows first that a similar result applies to particle filters using sequential importance sampling and the optimal proposal distribution and, second, that the optimal proposal yields minimal degeneracy when compared to any other proposal distribution that depends only on the previous state and the most recent observations. Thus, the optimal proposal provides performance bounds for filters using sequential importance sampling and any such proposal. An example with independent and identically distributed degrees of freedom illustrates both the need for exponentially large ensemble size with the optimal proposal as the system dimension increases and the potentially dramatic advantages of the optimal proposal relative to simpler proposals. Those advantages depend crucially on the magnitude of the system noise.
Abstract
Particle filters may suffer from degeneracy of the particle weights. For the simplest “bootstrap” filter, it is known that avoiding degeneracy in large systems requires that the ensemble size must increase exponentially with the variance of the observation log-likelihood. The present article shows first that a similar result applies to particle filters using sequential importance sampling and the optimal proposal distribution and, second, that the optimal proposal yields minimal degeneracy when compared to any other proposal distribution that depends only on the previous state and the most recent observations. Thus, the optimal proposal provides performance bounds for filters using sequential importance sampling and any such proposal. An example with independent and identically distributed degrees of freedom illustrates both the need for exponentially large ensemble size with the optimal proposal as the system dimension increases and the potentially dramatic advantages of the optimal proposal relative to simpler proposals. Those advantages depend crucially on the magnitude of the system noise.
Abstract
Mesoscale forecasts are strongly influenced by physical processes that are either poorly resolved or must be parameterized in numerical models. In part because of errors in these parameterizations, mesoscale ensemble data assimilation systems generally suffer from underdispersiveness, which can limit the quality of analyses. Two explicit representations of model error for mesoscale ensemble data assimilation are explored: a multiphysics ensemble in which each member’s forecast is based on a distinct suite of physical parameterization, and stochastic kinetic energy backscatter in which small noise terms are included in the forecast model equations. These two model error techniques are compared with a baseline experiment that includes spatially and temporally adaptive covariance inflation, in a domain over the continental United States using the Weather Research and Forecasting (WRF) Model for mesoscale ensemble forecasts and the Data Assimilation Research Testbed (DART) for the ensemble Kalman filter. Verification against independent observations and Rapid Update Cycle (RUC) 13-km analyses for the month of June 2008 showed that including the model error representation improved not only the analysis ensemble, but also short-range forecasts initialized from these analyses. Explicitly accounting for model uncertainty led to a better-tuned ensemble spread, a more skillful ensemble mean, and higher probabilistic scores, as well as significantly reducing the need for inflation. In particular, the stochastic backscatter scheme consistently outperformed both the multiphysics approach and the control run with adaptive inflation over almost all levels of the atmosphere both deterministically and probabilistically.
Abstract
Mesoscale forecasts are strongly influenced by physical processes that are either poorly resolved or must be parameterized in numerical models. In part because of errors in these parameterizations, mesoscale ensemble data assimilation systems generally suffer from underdispersiveness, which can limit the quality of analyses. Two explicit representations of model error for mesoscale ensemble data assimilation are explored: a multiphysics ensemble in which each member’s forecast is based on a distinct suite of physical parameterization, and stochastic kinetic energy backscatter in which small noise terms are included in the forecast model equations. These two model error techniques are compared with a baseline experiment that includes spatially and temporally adaptive covariance inflation, in a domain over the continental United States using the Weather Research and Forecasting (WRF) Model for mesoscale ensemble forecasts and the Data Assimilation Research Testbed (DART) for the ensemble Kalman filter. Verification against independent observations and Rapid Update Cycle (RUC) 13-km analyses for the month of June 2008 showed that including the model error representation improved not only the analysis ensemble, but also short-range forecasts initialized from these analyses. Explicitly accounting for model uncertainty led to a better-tuned ensemble spread, a more skillful ensemble mean, and higher probabilistic scores, as well as significantly reducing the need for inflation. In particular, the stochastic backscatter scheme consistently outperformed both the multiphysics approach and the control run with adaptive inflation over almost all levels of the atmosphere both deterministically and probabilistically.