Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: David I. Berry x
  • Refine by Access: All Content x
Clear All Modify Search
David I. Berry
and
Elizabeth C. Kent

The exchange, or flux, of heat between the oceans and atmosphere is an important driver of the global oceanic and atmospheric circulations but remains poorly quantified. Direct measurement of heat flux remains a research activity and so global heat flux datasets are generated using observations of winds, air and sea temperatures, and humidity as input to heat flux parameterizations known as “bulk formulas.” We remain dependent on the observations from merchant ships in the Voluntary Observing Ships (VOS) program, which are archived in the International Comprehensive Ocean-Atmosphere Dataset (ICOADS); measurements from buoys are sparse and satellites cannot accurately recover all the variables required for heat flux calculation.

Careful analysis of VOS data is necessary to produce gridded datasets of meteorological variables and fluxes with the accuracy required for climate research. Past in situ flux datasets have averaged observations on monthly timescales to reduce random uncertainty. It has therefore been hard to understand the contributions to observed variability from measurement errors, poor sampling, or natural variability. The new dataset, which covers the period 1973 to 2006, avoids this problem by first constructing daily mean fields using optimal interpolation. This allows each component of variability to be handled correctly and, for the first time, uncertainty estimates to be produced. New bias adjustments have also been developed and applied. The new dataset is described and a preliminary comparison with flux estimates from moored buoys, satellites, and atmospheric reanalysis models is presented.

Full access
Elizabeth C. Kent
,
Scott D. Woodruff
, and
David I. Berry

Abstract

It is increasingly recognized that metadata can significantly improve the quality of scientific analyses and that the availability of metadata is particularly important for the study of climate variability. The International Comprehensive Ocean–Atmosphere Data Set (ICOADS) contains in situ observations frequently used in climate studies, and this paper describes the ship metadata that are available to complement ICOADS. This paper highlights the metadata available in World Meteorological Organization Publication No. 47 that include information on measurement methods and observation heights. Changing measurement methods and heights are known to be a cause of spurious change in the climate record. Here the authors focus on identifying measurement heights for air temperature and wind speed and also give information on SST measurement depths.

Full access
David I. Berry
,
Elizabeth C. Kent
, and
Peter K. Taylor

Abstract

Marine air temperature reports from ships can contain significant biases due to the solar heating of the instruments and their surroundings. However, there have been very few attempts to derive corrections. The biases can reverse the sign of the measured air–sea temperature differences and cause significant errors in the sea surface latent and sensible heat flux estimates. In this paper a new correction for the radiative heating errors is presented. The correction is based on the analytical solution of the heat budget for an idealized ship, using empirical coefficients to represent the physical parameters. For the first time heat storage is included in the correction model. The heating errors are estimated for the Ocean Weather Ship Cumulus and the coefficients determined. When the correction is applied to the Cumulus data the average estimated error is reduced from 0.32° to 0.04°C and the diurnal cycle in the error is removed. The rms error is reduced by 30%. The correction technique, although not the coefficients derived here that are specific to the Cumulus, can be applied to air temperature data from any type of ship, or to data from groups of ships such as the Voluntary Observing Ships.

Full access
Thomas E. Cropper
,
David I. Berry
,
Richard C. Cornes
, and
Elizabeth C. Kent

Abstract

Marine air temperatures recorded on ships during the daytime are known to be biased warm on average due to energy storage by the superstructure of the vessels. This makes unadjusted daytime observations unsuitable for many applications including for the monitoring of long-term temperature change over the oceans. In this paper a physics-based approach is used to estimate this heating bias in ship observations from ICOADS. Under this approach, empirically determined coefficients represent the energy transfer terms of a heat budget model that quantifies the heating bias and is applied as a function of cloud cover and the relative wind speed over individual ships. The coefficients for each ship are derived from the anomalous diurnal heating relative to nighttime air temperature. Model coefficients, cloud cover, and relative wind speed are then used to estimate the heating bias ship by ship and generate nighttime-equivalent time series. A variety of methodological approaches were tested. Application of this method enables the inclusion of some daytime observations in climate records based on marine air temperatures, allowing an earlier start date and giving an increase in spatial coverage compared to existing records that exclude daytime observations.

Significance Statement

Currently, the longest available record of air temperature over the oceans starts in 1880. We present an approach that enables observations of air temperatures over the oceans to be used in the creation of long-term climate records that are presently excluded. We do this by estimating the biases inherent in daytime temperature reports from ships, and adjust for these biases by implementing a numerical heat-budget model. The adjustment can be applied to the variety of ship types present in observational archives. The resulting adjusted temperatures can be used to create a more spatially complete record over the oceans, that extends further back in time, potentially into the late eighteenth century.

Open access
Chunying Liu
,
Eric Freeman
,
Elizabeth C. Kent
,
David I. Berry
,
Steven J. Worley
,
Shawn R. Smith
,
Boyin Huang
,
Huai-min Zhang
,
Thomas Cram
,
Zaihua Ji
,
Mathieu Ouellet
,
Isabelle Gaboury
,
Frank Oliva
,
Axel Andersson
,
William E. Angel
,
Angela R. Sallis
, and
Adedoja Adeyeye

Abstract

This paper describes the new International Comprehensive Ocean–Atmosphere Data Set (ICOADS) near-real-time (NRT) release (R3.0.2), with greatly enhanced completeness over the previous version (R3.0.1). R3.0.1 had been operationally produced monthly from January 2015 onward, with input data from the World Meteorological Organization (WMO) Global Telecommunication Systems (GTS) transmissions in the Traditional Alphanumeric Codes (TAC) format. Since the release of R3.0.1, however, many observing platforms have changed, or are in the process of transitioning, to the Binary Universal Form for Representation of Meteorological Data (BUFR) format. R3.0.2 combines input data from both BUFR and TAC formats. In this paper, we describe input data sources; the BUFR decoding process for observations from drifting buoys, moored buoys, and ships; and the data quality control of the TAC and BUFR data streams. We also describe how the TAC and BUFR streams were merged to upgrade R3.0.1 into R3.0.2 with duplicates removed. Finally, we compare the number of reports and spatial coverage of essential climate variables (ECVs) between R3.0.1 and R3.0.2. ICOADS NRT R3.0.2 shows both quantitative and qualitative gains from the inclusion of BUFR reports. The number of observations in R3.0.2 increased by nearly 1 million reports per month, and the coverage of buoy and ship sea surface temperatures (SSTs) on monthly 2° × 2° grids increased by 20%. The number of reported ECVs also increased in R3.0.2. For example, observations of SST and sea level pressure (SLP) increased by around 30% and 20%, respectively, as compared to R3.0.1, and salinity is a new addition to the ICOADS NRT product in R3.0.2.

Significance Statement

The International Comprehensive Ocean–Atmosphere Data Set (ICOADS) is the largest collection of surface marine observations spanning from 1662 to the present. A new version, ICOADS near-real-time 3.0.2, includes data transmitted in the Binary Universal Form for Representation of Meteorological Data (BUFR) format, in combination with Traditional Alphanumeric Codes (TAC) data. Many of the organizations that report observations in near–real time have moved to BUFR, so this update brings ICOADS into alignment with collections and archives of these international data distributions. By including the BUFR reports, the number of observations in the upgraded version of ICOADS increased by nearly one million reports per month and spatial coverage of buoy and ship SSTs increased by 20% over the previous version.

Open access
Elizabeth C. Kent
,
John J. Kennedy
,
Thomas M. Smith
,
Shoji Hirahara
,
Boyin Huang
,
Alexey Kaplan
,
David E. Parker
,
Christopher P. Atkinson
,
David I. Berry
,
Giulia Carella
,
Yoshikazu Fukuda
,
Masayoshi Ishii
,
Philip D. Jones
,
Finn Lindgren
,
Christopher J. Merchant
,
Simone Morak-Bozzo
,
Nick A. Rayner
,
Victor Venema
,
Souichiro Yasui
, and
Huai-Min Zhang

Abstract

Global surface temperature changes are a fundamental expression of climate change. Recent, much-debated variations in the observed rate of surface temperature change have highlighted the importance of uncertainty in adjustments applied to sea surface temperature (SST) measurements. These adjustments are applied to compensate for systematic biases and changes in observing protocol. Better quantification of the adjustments and their uncertainties would increase confidence in estimated surface temperature change and provide higher-quality gridded SST fields for use in many applications.

Bias adjustments have been based on either physical models of the observing processes or the assumption of an unchanging relationship between SST and a reference dataset, such as night marine air temperature. These approaches produce similar estimates of SST bias on the largest space and time scales, but regional differences can exceed the estimated uncertainty. We describe challenges to improving our understanding of SST biases. Overcoming these will require clarification of past observational methods, improved modeling of biases associated with each observing method, and the development of statistical bias estimates that are less sensitive to the absence of metadata regarding the observing method.

New approaches are required that embed bias models, specific to each type of observation, within a robust statistical framework. Mobile platforms and rapid changes in observation type require biases to be assessed for individual historic and present-day platforms (i.e., ships or buoys) or groups of platforms. Lack of observational metadata and high-quality observations for validation and bias model development are likely to remain major challenges.

Open access
M. Ades
,
R. Adler
,
Rob Allan
,
R. P. Allan
,
J. Anderson
,
Anthony Argüez
,
C. Arosio
,
J. A. Augustine
,
C. Azorin-Molina
,
J. Barichivich
,
J. Barnes
,
H. E. Beck
,
Andreas Becker
,
Nicolas Bellouin
,
Angela Benedetti
,
David I. Berry
,
Stephen Blenkinsop
,
Olivier. Bock
,
Michael G. Bosilovich
,
Olivier. Boucher
,
S. A. Buehler
,
Laura. Carrea
,
Hanne H. Christiansen
,
F. Chouza
,
John R. Christy
,
E.-S. Chung
,
Melanie Coldewey-Egbers
,
Gil P. Compo
,
Owen R. Cooper
,
Curt Covey
,
A. Crotwell
,
Sean M. Davis
,
Elvira de Eyto
,
Richard A. M de Jeu
,
B.V. VanderSat
,
Curtis L. DeGasperi
,
Doug Degenstein
,
Larry Di Girolamo
,
Martin T. Dokulil
,
Markus G. Donat
,
Wouter A. Dorigo
,
Imke Durre
,
Geoff S. Dutton
,
G. Duveiller
,
James W. Elkins
,
Vitali E. Fioletov
,
Johannes Flemming
,
Michael J. Foster
,
Richard A. Frey
,
Stacey M. Frith
,
Lucien Froidevaux
,
J. Garforth
,
S. K. Gupta
,
Leopold Haimberger
,
Brad D. Hall
,
Ian Harris
,
Andrew K Heidinger
,
D. L. Hemming
,
Shu-peng (Ben) Ho
,
Daan Hubert
,
Dale F. Hurst
,
I. Hüser
,
Antje Inness
,
K. Isaksen
,
Viju John
,
Philip D. Jones
,
J. W. Kaiser
,
S. Kelly
,
S. Khaykin
,
R. Kidd
,
Hyungiun Kim
,
Z. Kipling
,
B. M. Kraemer
,
D. P. Kratz
,
R. S. La Fuente
,
Xin Lan
,
Kathleen O. Lantz
,
T. Leblanc
,
Bailing Li
,
Norman G Loeb
,
Craig S. Long
,
Diego Loyola
,
Wlodzimierz Marszelewski
,
B. Martens
,
Linda May
,
Michael Mayer
,
M. F. McCabe
,
Tim R. McVicar
,
Carl A. Mears
,
W. Paul Menzel
,
Christopher J. Merchant
,
Ben R. Miller
,
Diego G. Miralles
,
Stephen A. Montzka
,
Colin Morice
,
Jens Mühle
,
R. Myneni
,
Julien P. Nicolas
,
Jeannette Noetzli
,
Tim J. Osborn
,
T. Park
,
A. Pasik
,
Andrew M. Paterson
,
Mauri S. Pelto
,
S. Perkins-Kirkpatrick
,
G. Pétron
,
C. Phillips
,
Bernard Pinty
,
S. Po-Chedley
,
L. Polvani
,
W. Preimesberger
,
M. Pulkkanen
,
W. J. Randel
,
Samuel Rémy
,
L. Ricciardulli
,
A. D. Richardson
,
L. Rieger
,
David A. Robinson
,
Matthew Rodell
,
Karen H. Rosenlof
,
Chris Roth
,
A. Rozanov
,
James A. Rusak
,
O. Rusanovskaya
,
T. Rutishäuser
,
Ahira Sánchez-Lugo
,
P. Sawaengphokhai
,
T. Scanlon
,
Verena Schenzinger
,
S. Geoffey Schladow
,
R. W Schlegel
,
Eawag Schmid, Martin
,
H. B. Selkirk
,
S. Sharma
,
Lei Shi
,
S. V. Shimaraeva
,
E. A. Silow
,
Adrian J. Simmons
,
C. A. Smith
,
Sharon L Smith
,
B. J. Soden
,
Viktoria Sofieva
,
T. H. Sparks
,
Paul W. Stackhouse Jr.
,
Wolfgang Steinbrecht
,
Dimitri A. Streletskiy
,
G. Taha
,
Hagen Telg
,
S. J. Thackeray
,
M. A. Timofeyev
,
Kleareti Tourpali
,
Mari R. Tye
,
Ronald J. van der A
,
Robin, VanderSat B.V. van der Schalie
,
Gerard van der SchrierW. Paul
,
Guido R. van der Werf
,
Piet Verburg
,
Jean-Paul Vernier
,
Holger Vömel
,
Russell S. Vose
,
Ray Wang
,
Shohei G. Watanabe
,
Mark Weber
,
Gesa A. Weyhenmeyer
,
David Wiese
,
Anne C. Wilber
,
Jeanette D. Wild
,
Takmeng Wong
,
R. Iestyn Woolway
,
Xungang Yin
,
Lin Zhao
,
Guanguo Zhao
,
Xinjia Zhou
,
Jerry R. Ziemke
, and
Markus Ziese
Free access
Robert J. H. Dunn
,
F. Aldred
,
Nadine Gobron
,
John B. Miller
,
Kate M. Willett
,
M. Ades
,
Robert Adler
,
Richard, P. Allan
,
Rob Allan
,
J. Anderson
,
Anthony Argüez
,
C. Arosio
,
John A. Augustine
,
C. Azorin-Molina
,
J. Barichivich
,
H. E. Beck
,
Andreas Becker
,
Nicolas Bellouin
,
Angela Benedetti
,
David I. Berry
,
Stephen Blenkinsop
,
Olivier Bock
,
X. Bodin
,
Michael G. Bosilovich
,
Olivier Boucher
,
S. A. Buehler
,
B. Calmettes
,
Laura Carrea
,
Laura Castia
,
Hanne H. Christiansen
,
John R. Christy
,
E.-S. Chung
,
Melanie Coldewey-Egbers
,
Owen R. Cooper
,
Richard C. Cornes
,
Curt Covey
,
J.-F. Cretaux
,
M. Crotwell
,
Sean M. Davis
,
Richard A. M. de Jeu
,
Doug Degenstein
,
R. Delaloye
,
Larry Di Girolamo
,
Markus G. Donat
,
Wouter A. Dorigo
,
Imke Durre
,
Geoff S. Dutton
,
Gregory Duveiller
,
James W. Elkins
,
Vitali E. Fioletov
,
Johannes Flemming
,
Michael J. Foster
,
Stacey M. Frith
,
Lucien Froidevaux
,
J. Garforth
,
Matthew Gentry
,
S. K. Gupta
,
S. Hahn
,
Leopold Haimberger
,
Brad D. Hall
,
Ian Harris
,
D. L. Hemming
,
M. Hirschi
,
Shu-pen (Ben) Ho
,
F. Hrbacek
,
Daan Hubert
,
Dale F. Hurst
,
Antje Inness
,
K. Isaksen
,
Viju O. John
,
Philip D. Jones
,
Robert Junod
,
J. W. Kaiser
,
V. Kaufmann
,
A. Kellerer-Pirklbauer
,
Elizabeth C. Kent
,
R. Kidd
,
Hyungjun Kim
,
Z. Kipling
,
A. Koppa
,
B. M. Kraemer
,
D. P. Kratz
,
Xin Lan
,
Kathleen O. Lantz
,
D. Lavers
,
Norman G. Loeb
,
Diego Loyola
,
R. Madelon
,
Michael Mayer
,
M. F. McCabe
,
Tim R. McVicar
,
Carl A. Mears
,
Christopher J. Merchant
,
Diego G. Miralles
,
L. Moesinger
,
Stephen A. Montzka
,
Colin Morice
,
L. Mösinger
,
Jens Mühle
,
Julien P. Nicolas
,
Jeannette Noetzli
,
Ben Noll
,
J. O’Keefe
,
Tim J. Osborn
,
T. Park
,
A. J. Pasik
,
C. Pellet
,
Maury S. Pelto
,
S. E. Perkins-Kirkpatrick
,
G. Petron
,
Coda Phillips
,
S. Po-Chedley
,
L. Polvani
,
W. Preimesberger
,
D. G. Rains
,
W. J. Randel
,
Nick A. Rayner
,
Samuel Rémy
,
L. Ricciardulli
,
A. D. Richardson
,
David A. Robinson
,
Matthew Rodell
,
N. J. Rodríguez-Fernández
,
K.H. Rosenlof
,
C. Roth
,
A. Rozanov
,
T. Rutishäuser
,
Ahira Sánchez-Lugo
,
P. Sawaengphokhai
,
T. Scanlon
,
Verena Schenzinger
,
R. W. Schlegel
,
S. Sharma
,
Lei Shi
,
Adrian J. Simmons
,
Carolina Siso
,
Sharon L. Smith
,
B. J. Soden
,
Viktoria Sofieva
,
T. H. Sparks
,
Paul W. Stackhouse Jr.
,
Wolfgang Steinbrecht
,
Martin Stengel
,
Dimitri A. Streletskiy
,
Sunny Sun-Mack
,
P. Tans
,
S. J. Thackeray
,
E. Thibert
,
D. Tokuda
,
Kleareti Tourpali
,
Mari R. Tye
,
Ronald van der A
,
Robin van der Schalie
,
Gerard van der Schrier
,
M. van der Vliet
,
Guido R. van der Werf
,
A. Vance
,
Jean-Paul Vernier
,
Isaac J. Vimont
,
Holger Vömel
,
Russell S. Vose
,
Ray Wang
,
Markus Weber
,
David Wiese
,
Anne C. Wilber
,
Jeanette D. Wild
,
Takmeng Wong
,
R. Iestyn Woolway
,
Xinjia Zhou
,
Xungang Yin
,
Guangyu Zhao
,
Lin Zhao
,
Jerry R. Ziemke
,
Markus Ziese
, and
R. M. Zotta
Free access