Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Evert I. F. de Bruijn x
  • Refine by Access: All Content x
Clear All Modify Search
Evert I. F. de Bruijn
,
Fred C. Bosveld
,
Siebren de Haan
, and
Albert A.M. Holtslag
Full access
Evert I. F. de Bruijn
,
Fred C. Bosveld
,
Siebren de Haan
, and
Bert G. Heusinkveld

Abstract

A field experiment with a hot-air balloon was conducted in the vicinity of the meteorological observatory of Cabauw in The Netherlands. Recreational hot-air balloon flights contain useful wind information in the atmospheric boundary layer (ABL). On a yearly basis between 8000 and 9000 flights are taking place in The Netherlands, mainly during the morning and evening transition. An application (app) for smartphones has been developed to collect location data. We report about a feasibility study of a hot-air balloon experiment where we investigated the accuracy of the smartphone’s Global Navigation Satellite System (GNSS) receiver using an accurate geodetic GNSS receiver as a reference. Further, we study the dynamic response of the hot-air balloon on variations in the wind by measuring the relative wind with a sonic anemometer, which is mounted below the gondola. The GNSS comparison reveals that smartphones equipped with a GNSS chip have in the horizontal plane an absolute position error standard deviation of 5 m, but their relative position error standard deviation is smaller. Therefore, the horizontal speeds, which are based on relative positions and a time step of 1 s, have standard deviations of σ u = 0.8 m s−1 and σ υ = 0.6 m s−1. The standard deviation in altitude is 12 m. We have validated the hot-air balloon derived wind data with observations from the Cabauw tower and the results are encouraging. We have studied the dynamics of a hot-air balloon. An empirical value of the response length has been found which accounts for the balloon’s inertia after a changing wind, and which compared favorable with the theoretical derived value. We have found a small but systematic movement of the hot-air balloon relative to the surrounding air. The model for the balloon dynamics has been refined to account for this so-called inertial drift.

Free access
Evert I. F. de Bruijn
,
Fred C. Bosveld
,
Siebren de Haan
, and
Albert A.M. Holtslag

Abstract

We report about a new third-party observation, namely, wind measurements derived from hot-air balloon (HAB) tracks. We first compare the HAB winds with wind measurements from a meteorological tower and a radio acoustic wind profiler, both situated at the topographically flat observatory near Cabauw, the Netherlands. To explore the potential of this new type of wind observation in other topographies, we present an intriguing HAB flight in Austria with a spectacular mountain–valley circulation. Subsequently, we compare the HAB data with a numerical weather prediction (NWP) model during 2011–13 and the standard deviation of the wind speed is 2.3 m s−1. Finally, we show results from a data assimilation feasibility experiment that reveals that HAB wind information can have a positive impact on a hindcasted NWP trajectory.

Full access
Evert I. F. de Bruijn
,
Siebren de Haan
,
Fred C. Bosveld
,
Ben Wichers Schreur
, and
Albert A. M. Holtslag

Abstract

High-resolution upper-air wind observations are sparse, and additional observations are a welcome source of meteorological information. In this paper the potential of applying balloon flights for upper-air wind measurements is explored, and the meteorological content of this information is investigated. The displacement of a hot-air balloon is a measure for the wind speed and direction and thus a potential source for wind observations in the lower part of the troposphere. The response time of the balloon on the changing wind is fast in the beginning and levels off for smaller relative wind speeds. Four case studies are presented, and the balloon-derived winds are compared with other wind observations and with results from the HIRLAM–ALADIN Research on Mesoscale Operational NWP in Europe (HARMONIE) model. It turns out that hot-air balloon tracks can indeed produce useful wind observations just above and in the atmospheric boundary layer (ABL).

Full access